

DR. COLLEEN EBERSOHN PhD Univ. Pretoria Cell:072 222 6013

email:ebersohn@cyberperk.co.za

MS. JANET EBERSOHN BSc. Hons. Environmental Managemei Cell: 082 557 7122 e-mail: <u>janet@ecoroute.co.za</u>

Appendix G5: Traffic Impact Assessment

TRAFFIC IMPACT ASSESSMENT

FOR A PROPOSED RESIDENTIAL DEVELOPMENT ON ERF 2074, PLETTENBERG BAY

August 2024

Prepared for: Duinesand (Pty) Ltd

Prepared by: Engineering Advice and Services (Pty) Ltd (041) 5812421

DOCUMENT CONTROL SHEET

i

CLIENT REF: **DUINESAND (PTY) LTD** PROJECT NAME: PROPOSED RESIDENTIAL DEVELOPMENT ON ERF 2074, PLETTENBERG BAY DOCUMENT TITLE: TRAFFIC IMPACT ASSESSMENT DOCUMENT FILE REF: F:\2200-2299\2296\Reports\REP001 - Proposed Residential Development on erf

2074, Plettenberg Bay - Final August 2024.docx

Version		1				
Compiled by		JK Char Candida (201580	JK Charlton Candidate Eng Technologist (201580304)		August 2024	
Reviewed by		CGA H (200070	CGA Hastie Pr Tech. Eng (200070122)		August 2024	
Amendments made	by					
DISTRIBUTION:	1)	Original	:	Client – Duinesand (Pty) Ltd –	- Mr Gerhard de Vo	0S
	2)	Сору	:	Bitou Local Municipality		
	3)	Сору	:	Planning Space – Ms L Botha		
	4)	Сору	:	EAS File 2296		
PREPARED BY :	E P H 6	ngineering Advice and Services (Pty) Ltd O Box 13867 IUMEWOOD 013				
Telephone : Email :	0. c:	41 581 24 aryh@easj	21 pe.co.z	a		

This Report has been prepared by Engineering Advice and Services, with all reasonable skill, care and diligence within the terms of the contract with the client, incorporating our standard terms and conditions of business and taking into account the resources devoted to it by agreement with the client. EAS disclaims any responsibility to the client and others in respect of any matters outside of the scope of the above.

This report is exclusive to the client and the described project. EAS accepts no responsibility of whatsoever nature to third parties to whom this Report, or any part thereof, is made known. Any such persons or parties rely on the report at their own risk.

ii Contents

CONTLINIS	Page
Document Control Sheet Contents List of Tables List of Figures List of Annexures Abbreviations	i ii iii iii iii iii iii
1 Introduction	4
 Background Objectives of the Study Methodology Study Area Assumptions and Limitations 	4 4 4 6 6
2 Land Use Rights, Development and Environs	7
 2.1 Development Environs 2.2 Overview of Development 2.3 Current and Proposed Land –Use Rights 	7 7 7
3 Data Collection	8
 3.1 Peak Hour Traffic Volumes 3.2 Daily Traffic Volumes 3.3 Peak Season Peak Hour Traffic Volumes 3.4 Existing Road Network 3.5 Spatial Development Framework 3.6 Non-Motorised Transport 3.7 Public Transport 	8 9 11 13 15 15 15
4 Capacity Analysis – Before Development	16
5 Trip Generation	17
5.1 Erf 2073 5.2 Erf 2074	17 18
6 Trip Distribution	18
7 Proposed Access Arrangements	21
 7.1 Access Location and Configuration 7.2 Access Control 7.3 Emergency Access 	21 22 23
8 Capacity Analysis – After Development	24
 8.1 2025 After Development 8.2 2030 After Development 8.3 2030 After Development – Peak Season 	24 24 25
9 Public Transport Operations and Pedestrian Arrangements	27
10 Parking Requirements	27
11 Conclusions	27
12 Recommendations	28
13 References	28

LIST OF TABLES

iii

Table 1: Growth Trends - AADT	9
Table 2: Level of Service definitions for Vehicles (Highway Capacity Manual ⁽⁷⁾ method)	16
Table 3: Results of Intersection Capacity Analysis – 2025 Before Development	16
Table 4: Results of Intersection Capacity Analysis – 2025 Before Development – Marine / Ultra City	16
Table 5: Peak Hour Trip Generation Summary	17
Table 6: Peak Hour Trip Generation Summary	18
Table 7: Access Control Service Flow Rates	22
Table 8: Access Control Queue Lengths	22
Table 9: Access Control Queue Lengths for erf 2074	23
Table 10: Results of Intersection Capacity Analysis – 2025 After Development	24
Table 11: Results of Intersection Capacity Analysis – 2030 After Development – Normal	24
Table 12: Results of Intersection Capacity Analysis – 2030 After Development – Peak Season	25

LIST OF FIGURES

Figure 1: Locality Plan	5
Figure 2: Existing Peak Hour Traffic Volumes – 2024	8
Figure 3: Escalated Background Peak Hour Traffic Volumes - 2025	9
Figure 4: Escalated Background Peak Hour Traffic Volumes - 2030	10
Figure 5: 2019 Traffic Volume Variation (Dec ~ 100%)	11
Figure 6: December 2019 Traffic Volume Variation (20 Dec = 100%)	12
Figure 7: Escalated Background Peak Season Peak Hour Traffic Volumes – 2030	13
Figure 8: Existing Road and Intersection configuration	14
Figure 9: Bitou Spatial Development Framework	15
Figure 10: Reassigned Peak Hour Traffic Volumes – Erf 2073	17
Figure 11: Generated Peak Hour Traffic Volumes	19
Figure 12: Peak Hour Traffic Volumes After Development - 2025	19
Figure 13: Peak Hour Traffic Volumes After Development – 2030	20
Figure 14: Peak Hour Traffic Volumes After Development – 2030 Peak Season	20
Figure 15: Proposed Site Layout and Access Configuration	26

LIST OF ANNEXURES

ANNEXURE A Town Planning Report

ANNEXURE B Peak Hour Traffic Counts

ANNEXURE C Historical Traffic Data – MR00382

ANNEXURE D N2 Station 18051 Goose Valley

ANNEXURE E SIDRA OUTPUT SHEETS 2025 Before Development

ANNEXURE F SIDRA OUTPUT SHEETS 2025 After Development

ANNEXURE G SIDRA OUTPUT SHEETS 2030 After Development

ANNEXURE H SIDRA OUTPUT SHEETS 2030 After Development: Peak Season

ABBREVIATIONS

- EAS Engineering Advice & Services (Pty) Ltd
- Km/h kilometres per hour
- LOS Level of Service
- LSDF Local Spatial Development Framework
- TIA Traffic Impact Assessment
- TMH Technical Methods for Highways
- TRH Technical Recommendations for Highways

1 INTRODUCTION

1.1 BACKGROUND

Engineering Advice & Services (Pty) Ltd was appointed by Duinesand (Pty) Ltd during July 2024 to prepare a Traffic Impact Assessment for a proposed residential (Group Housing) Development on 2074, Plettenberg Bay, situated in the Bitou Local Municipality. The location of the site and proposed development is indicated on **Figure 1** overleaf.

1.2 OBJECTIVES OF THE STUDY

In broad terms, the purpose of the traffic assessment is to determine the extent and nature of the traffic generated by the proposed development, assess the impact of this traffic on the operation of the associated road network, and devise solutions for any problems identified. The following key elements, *inter alia*, are addressed in this traffic impact assessment:

4

- The suitability and safety of proposals for access to and egress from the site;
- The capacity of the existing and future road network within the influence radius; and
- The road upgrading measures required to accommodate traffic generated by the proposed development.

In general, this report serves to satisfy the Bitou Local Municipality and the Department of Mobility of the Western Cape Government that the traffic impact of the envisaged development is within acceptable limits and that the suggested improvements conform to the standards and parameters set by the relevant road authority.

1.3 METHODOLOGY

The approach followed in conducting the traffic impact statement was in accordance with the guidelines set by **TMH 16 Volume 1- South African Traffic Impact and Site Assessment Manual** ⁽¹⁾.

Given the extent of the proposed development and in terms of the aforementioned guidelines, the development is considered to be a medium-sized development. As such, this assessment considered impact for both the development (assumed to be 2025) and development plus five-year (2030) horizons.

The methodology used was as follows:

- Present traffic flow patterns were obtained and the affected intersections analysed, where after recommendations were made on the present need for road upgrading, without taking the proposed development into account;
- Given the development extent, trips generated by the development were determined using applicable trip generation rates specified in TMH 17 Volume 1 South African Trip Data Manual ⁽²⁾ document;
- The distribution of the generated trips was estimated where after the generated traffic was assigned to the surrounding road network;
- Operation of affected intersections and the proposed access point was analysed to ensure that they
 operate safely at acceptable levels of service and recommendations made on the need for road upgrading
 taking cognisance of the proposed development for the 2025 and 2030 planning horizons;
- The suitability of the location and configuration of the proposed access point was assessed in terms of the Access Management Guidelines ⁽³⁾; and
- Taking into account the major findings of the study, conclusions were made regarding the financial responsibilities of the affected parties for required road upgrading measures.

1.4 STUDY AREA

Based on the type and extent of the development the study area extended along Marine Way (Main Road 00383) from its intersection with the Ultra City access to the intersection with Challenge Drive as it is considered that trips generated by the proposed development will approach along these roads and through these intersections.

6

1.5 Assumptions and Limitations

The scope of this TIA is limited to the project as described in this report. The scope only deals with vehicular and pedestrian traffic related impacts to the site and excludes consideration of the following:

- Any vehicular activity 500m east of the Marine Way / Challenge Drive intersection;
- Any vehicular activity at the N2 / Marine Way intersection;

The report is based on a number of assumptions and is subject to certain limitations. These are as follows:

- That vehicle trips are based on development information supplied by the site owner / developer;
- That trips generated by the proposed development are distributed to and from the site based on the location of the development site, relative to trip attractors (e.g., places of employment and shopping centres) and the major road networks;
- That access to the proposed residential development will be provided from Marine Way (MR00383); and
- That the site will be used for the purposes as advised by the developer.

Notwithstanding these assumptions and limitations, it is our view that this Traffic Impact Assessment provides the necessary framework to allow the developer to conduct activities within the necessary legal, planning and operational requirements set by the relevant road authorities.

2 LAND USE RIGHTS, DEVELOPMENT AND ENVIRONS

2.1 DEVELOPMENT ENVIRONS

The site, which is currently vacant, is situated to the west of the Plettenberg Bay CBD. The site is located immediately to the south of Marine Way (MR00383) approximately 300m east of the N2 / Marine Way roundabout as indicated on **Figure 1**.

7

The site is bordered by residential development of varying types and densities.

The site slopes upward away from the road to the south.

2.2 OVERVIEW OF DEVELOPMENT

The proposed development is a residential development comprising 228 two- and three-bedroom residential units in multi-level apartment blocks.

2.3 CURRENT AND PROPOSED LAND –USE RIGHTS

The site measures 6.2458 ha in extent and is currently zoned for Agricultural Zone 1 purposes in terms of the **Bitou Municipality Zoning Scheme By-law**⁽⁴⁾.

To accommodate the proposed development, it is proposed to rezone the property to "General Residential II" purposes and then subdivide the property into 3 or 4 portions to facilitate phased implementation.

A copy of the Planning report is attached as **Annexure A**.

3 DATA COLLECTION

F

3.1 PEAK HOUR TRAFFIC VOLUMES

Peak hour traffic turning movement counts were conducted at the following intersections during typical weekday AM and PM peak periods on Wednesday 14 August 2024.

- Marine Way / N2 westbound off-ramp
- Marine Way / Erf 2073
- Marine Way / Challenge Drive

The detailed survey data is attached as Annexure B and summarised on Figure 2 overleaf.

It is noted that the existing traffic volumes observed at the erf 2073 access point are deemed to reflect the traffic generated by the existing Phase 1 development on erf 2073, and will be reassigned to the planned new access point to erf 2074 at the existing Challenge Drive intersection.

8

3.2 DAILY TRAFFIC VOLUMES

F

As this study will also assess the impact of the development for the 2025 and 2030 planning horizons, traffic volumes will be escalated to approximate conditions for these horizons.

Ideally, given that Marine Way (MR00383) is a provincial main road historical daily traffic volume data would be available on the Western Cape Government's Road Network Information System (RNIS).

However, as no historical data exists for MR00383 is available, the nearest available data is along Robberg Road (MR00382) to the west of the town centre.

The growth trend at this count location is summarised in **Table 1** below and the data sheets attached as **Annexure C**.

Table 1: Growth Trends - AADT

Road no.	Description	Initial count (2000)	Latest count (2022)	Growth Rate*	Recalculated Rate #
MR00382	Robberg Rd	1944	4692	2.43%	3.7 %

* Growth Rate based on last 5 available counts

Recalculated growth rate based on selected counts

The growth rate of 2.5% per annum will be used to escalate background traffic volumes.

The escalated background traffic volumes for the 2025 and 2030 development horizons are indicated on **Figure 3** and **Figure 4** overleaf.

10

3.3 PEAK SEASON PEAK HOUR TRAFFIC VOLUMES

Given that the proposed development is located in area which experiences seasonal traffic fluctuations, this study will also assess the impact of the proposed development during the peak holiday period. To achieve this, it is necessary to either source peak season volumes or apply an expansion factor to adjust normal traffic volumes to reflect peak season volumes.

11

Normal traffic occurs on a typical weekday during a school term, while peak season traffic is traffic that occurs during peak holiday periods i.e., Easter, June/July, September/October and Christmas/New Year.

As stated earlier, surveys were conducted on a typical weekday during August 2024. However, this peak period does not reflect the worst-case scenario, which is normally experienced during December / January.

In the interests of speedily addressing the requirements at the affected intersections as soon as possible, it is necessary to consider traffic flow during peak holiday periods. As it is not always possible to conduct surveys during peak holiday periods for various reasons, the approach followed was to make use of a Modification Factor to expand surveyed peak hour traffic volume to a required peak season peak hour making use of variations in traffic flow at a permanent count station in the vicinity.

A paper entitled **Quantification of the Natural Variation in Traffic Flow on Selected National Roads in South Africa** ⁽³⁾ presented at the SA Transport Conference in 2017, indicates how a Modification Factor can be used to expand surveyed peak hour traffic volume to a required peak season peak hour making use of variations in traffic flow at a nearby permanent count station.

Traffic data was sourced from the permanent SANRAL count station on the N2 at Goose Valley (Station 18051 – attached as **Annexure D**). The relationship between the data at this station on the same day as the peak hour traffic counts conducted in Marine Way (Wednesday 14 August) and peak season December data (generally the highest peak seasonal period) was used to modify the surveyed peak hour traffic to represent peak season traffic volumes at the Marine Way intersections.

Figure 5 below and **Figure 6** overleaf respectively indicate traffic volume variances from 1 January to 31 December 2019. Based on the data analysed, December is the peak volume and equates to 100%. The average volumes for the remainder of the surveyed 12-month period based on monthly averages are in the order of 63%. Average volumes during August based on total monthly volumes are in the order of 61% of the December peak season period.

Figure 5: 2019 Traffic Volume Variation (Dec ~ 100%)

F

12

Analysis of the N2 data throughout the year indicates that on Wednesday 14 August (which is assumed to equate to Wednesday 14 August 2024) the N2 volume equates to 44% of the highest recorded daily volume on the N2 (which occurs during the December peak period).

Further analysis of the daily volumes during the December peak period, indicate that the average volume for December is 70%. **Figure 6** below indicates that the average volume was exceeded on 15 days.

For the purposes of this study therefore, an additional After Development peak season scenario will be conducted for 2030, where the escalated surveyed background peak hour traffic volumes will be increased by a factor of 1.59 to reflect the December Peak season average. The average peak season volume is considered a more realistic measure.

Figure 6: December 2019 Traffic Volume Variation (20 Dec = 100%)

The adjusted peak season escalated background traffic volumes for the 2030 development horizon are indicated on **Figure 7**Error! Reference source not found..

13

3.4 EXISTING ROAD NETWORK

F

 Marine Way (MR00383) is a Class U3 provincial main road that provides the main access to Plettenberg Bay from N2 Section 8 passing through the Bitou Municipality

The road consists of a single 4.8m wide lane per direction, sidewalks on the northern edge (towards the town centre) and is in a good condition. Turning lanes are configured on the approach to the Ultracity / Whalesong intersection and the Challenge Drive intersection is configured as a single-lane roundabout.

The posted speed limit is 60km/hr.

• Challenge Drive is a Class U5 residential street serving residential suburbs to the north of Marine Way.

The road consists of a single 3.4m wide lane per direction and is in a very good condition based on visual assessments conducted as part of the District Municipality RRAMS programme.

The posted speed limit is 60km/h.

 Ultracity Access provides access to the Shell Ultracity development situated next to the N2 / Marine Way intersection.

The access road is configured with one 3.4 m wide exiting lane and two 3.4 m wide approach lanes and is in good condition.

The existing road network configuration is indicated on Figure 8 overleaf.

Marine Way approaching Challenge Drive

3.5 SPATIAL DEVELOPMENT FRAMEWORK

Figure 9 below is an extract of the Bitou Spatial Development Framework ⁽⁶⁾ prepared by the Bitou Municipality.

15

The SDF denotes the area in which the development is proposed as a Strategic Development area.

Figure 9: Bitou Spatial Development Framework

3.6 NON-MOTORISED TRANSPORT

A 2m wide paved pedestrian walkway exists on the north side of Marine Way (MR00383) from the N2 to the CBD.

Pedestrian crossing facilities are in place across Marine Way as well as across the side roads at the Challenge Drive intersectioon.

3.7 PUBLIC TRANSPORT

Minibus-taxi services currently operate along MR00383 between the CBD and residential / industrial areas.

4 CAPACITY ANALYSIS – BEFORE DEVELOPMENT

Level of Service (LOS) is defined as the operating condition that may occur at a intersection when it accommodates various traffic volumes. LOS is a qualitative measure of the effect of speed, travel time, traffic interruptions, freedom to manoeuvre, safety, driving comfort and convenience, and operating costs. **LOS D** is considered an acceptable design standard. The LOS applicable to intersections under various control conditions, as defined in the **Highway Capacity Manual** ⁽⁷⁾ are indicated in **Table 2** below:

16

Level of	Control delay per ve (Including geo	LOS Colour	
Service	Signals and Roundabouts	Stop Signs and Yield Signs	Rating
А	d ≤ 10	d ≤ 10	Excellent
В	10 < d ≤ 20	10 < d ≤ 15	Very Good
С	20 < d ≤ 35	15 < d ≤ 25	Good
D	35 < d ≤ 55	25 < d ≤ 35	Acceptable
E	55 < d ≤ 80	35 < d ≤ 50	Poor
F	80 < d	50 < d	Very Poor

Table 2: Level of Service definitions for Vehicles (Highway Capacity Manual ⁽⁷⁾ method)

The 2025 background traffic situation was analysed in order to determine the Level of Service at which the affected intersections would operate before development occurs for the 2025 development horizon.

The capacity analysis was undertaken using the **SIDRA Intersection 9 Network** ⁽⁸⁾ capacity analysis method but applying the **Highway Capacity Manual** ⁽⁷⁾ gap acceptance criteria for unsignalised intersections.

The results are shown in Table 3 below and the detailed SIDRA output sheets attached as Annexure E.

	Table 3:	Results o	of Intersection	Capacity	Analysis –	2025 Before	Development
--	----------	------------------	-----------------	----------	------------	-------------	--------------------

Intersection	Delay		v/c		LOS*	
intersection	АМ	РМ	АМ	PM	АМ	PM
Marine Way / Ultra-City	6.2	59.4	0.759	>1.000	A*	F*
Marine Way / Erf 2073	0.2	0.1	0.344	0.376	A*	A*
Marine Way / Challenge Drive	5.2	5.0	0.442	0.501	Α	А

* - SIDRA Intersection Network ⁽⁸⁾ does not calculate intersection LOS for stop-controlled intersections. The LOS indicated is sourced from the Highway Capacity Manual ⁽⁷⁾ (Table 2 above).

As can be seen from the results contained in **Table 3**, no capacity problems are experienced at the affected intersections under current normal weekday conditions for the escalated 2025 before development scenario apart from the Ultra City intersection which operates at LOS F during the PM peak hour.

Further analysis with this intersection configured as a roundabout, results in operation at LOS A as indicated in **Table 4**.

Table 4: Results of Intersection	Capacity Analysis –	2025 Before Development	– Marine / Ultra Citv

Configuration	Delay		v/c		LOS*	
Configuration	АМ	РМ	AM	PM	АМ	PM
Existing - Priority	6.2	59.4	0.759	>1.000	A*	F*
Roundabout	5.6	6.0	0.390	0.520	А	А

* - SIDRA Intersection Network ⁽⁸⁾ does not calculate intersection LOS for stop-controlled intersections. The LOS indicated is sourced from the Highway Capacity Manual ⁽⁷⁾ (Table 2 above).

5 **TRIP GENERATION**

5.1 ERF 2073

The total development on erf 2073 comprise 200 residential units, the first phase of which has been developed. The current peak hour trips entering and exiting the site – indicated on **Figure 2** - will be reassigned to the new access for erf 2074 at the existing intersection at Challenge Drive.

17

TMH 17 Volume 1 - South African Trip Data Manual ⁽²⁾ recommends peak hour trip generation rates of 0.85 vehicle trips / residential unit for simplex or duplex townhouse complexes for both weekday AM and PM peak hours. A trip is defined as the movement from an origin to a destination.

For the Phase 2 component of erf 2073 comprising an additional 200 units this relates to the following generated trips.

TGR (Weekday AM/PM)	=	0.85 * units
	=	0.85 * 200
	=	170 trips (in and out)
<u>Split in / out</u>	=	25 : 75 (AM)
-	=	70:30 (PM)

The trips generated by the proposed development are summarised in **Table 5** below.

Table 5: Peak Hour Trip Generation Summary

COMPONENT	A	м	РМ	
COMPONENT	IN	OUT	IN	OUT
Town House Complex (231)	43	128	119	51

Considering the existing observed reassigned peak hour trips the peak hour trips for the full development of erf 2073 are indicated on **Figure 10**.

The generated trips have been distributed 40% to the west and 60% to the east along Marine Way.

5.2 ERF 2074

TMH 17 Volume 1 - South African Trip Data Manual ^(2Error! Reference source not found.) recommends peak hour trip generation rates of 0.85 vehicle trips / residential unit for simplex or duplex townhouse complexes for both the weekday AM and PM peak hours. A trip is defined as the movement from an origin to a destination.

For a proposed development of 228 units this relates to the following generated trips.

TGR (Weekday AM/PM)	=	0.85 * units
	=	0.85 * 228
	=	194 trips (in and out)
<u>Split in / out</u>	=	25 : 75 (AM)
-	=	70:30 (PM)

The trips generated by the proposed development are summarised in **Table 6** below.

Table 6: Peak Hour Trip Generation Summary

COMPONENT	Α	м	РМ		
	IN	OUT	IN	Ουτ	
Town House Complex (231)	48	145	136	58	

6 TRIP DISTRIBUTION

Based on the observed traffic volumes and taking into account the location of the development relative to the surrounding residential areas, the following distribution has been assumed for trips generated by the development:

- 35% to and from the west via Marine Way (MR00383) and the N2; and
- 60% to and from the east via Marine Way (MR00383); and
- 5% to and from the north via Challenge Drive.

The generated peak hour trips for erf 2074 are indicated on **Figure 11** overleaf and the generated trips plus the reassigned and generated trips for erf 2073 added to the weekday AM and PM peak hour volumes for the 2025 and 2030 development horizons are indicated on **Figure 12** and **Figure 13** overleaf.

The generated and reassigned peak hour trips added to the peak season weekday AM and PM peak hour volumes for the 2030 development horizon are indicated on **Figure 14**.

19

20

7 PROPOSED ACCESS ARRANGEMENTS

7.1 ACCESS LOCATION AND CONFIGURATION

Separate access to erf 2074 does not meet the spacing requirements for a Class 3 urban arterial road in terms of the **Access Management Guidelines** ⁽³⁾.

21

As such, the Western Cape Government has indicated that in order to meet the required access spacing standards, access would only be permitted at the existing intersection at Challenge Drive.

In addition, the adjacent development on erf 2703, Phase 1 of which gains direct access from Marine Way may not development further until the access is realigned via the Challenge Drive intersection.

This requires that the access to erf 2073 would need to traverse erf 2074.

As indicated on **Figure 15**, access to the proposed development as well as erf 2073 is proposed at the existing Marine Way / Challenge Drive intersection.

The access road to serve erf 2073 is accommodated at the northern end of erf 2074 such that the planned development is contained from a security perspective.

Configuration of the approach to the existing roundabout is detailed on **Figure 15**, and provides for freeflow for vehicles entering the erf 2073 access road, i.e., the traffic exiting erf 2074 is controlled such that the movement entering erf 2073 enjoys free flow. The required stacking distance between the proposed access gate and Marine Way is discussed in further detail

Shoulder sight distance for a stop condition to accommodate a single-unit truck and trailer vehicle on a road with a posted speed limit of 60km/h is 192m. 125m is required for a passenger car.

The available sight distance from the proposed access at the Challenge Drive intersection exceeds 200m, given that the alignment is straight and the road is flat to both the east and west.

View from access towards the site

Access to the development will be security controlled. Service flow rates at access-controlled entrances in vehicles / hour from Table 30 of TMH 16 Vol 2 - South African Traffic Impact and Site Assessment Standards and Requirements Manual⁽⁹⁾ are indicated in Table 7 below.

22

As noted, the flow rates range from the slowest throughput -50 vph in the case of intercom operated gates to 480 vph in the case of swiping magnetic cards.

The higher the service flow rate, the less likely that there will be congestion at the entrance.

Table 7: Access Control Service Flow Rates

Service flow rates (veh/h) for different control types				
Control type	Service flow (vph)			
Swipe magnetic card	480			
Remote controlled gates	450			
Ticket dispenser: Automatic	390 -450			
Ticket dispenser: Push button	220 - 360			
Pin number operated gates	150			
Pay fee on entry	120			
Cell-phone operated gates (gate opens when a call is received)	100			
Manual recording, Visitor completes form	80			
Intercom operated gates (visitor contacts resident by intercom)	50			

The number of entry lanes and the number of vehicles queuing in each lane are calculated after determining a Traffic Ratio over all entry lanes using the following formula:

$$Traffic ratio = \frac{Total Volume / PHF}{Service flow rate} \cdot 100$$

The number of lanes and queue length is then determined from **Table 8** below (Table 31 in TM16 Vol 2).

95 th Pe	95 th Percentile queue length (vehicles per channel) at controlled accesses					
Storage (Vehs) Traffic ratio (Percentage) for different Numbers of Channels						els
NQue	1 Channel	2 Channel	3 Channel	4 Channel	5 Channel	6 Channel
1	23	58	97	140	188	235
2	39	94	155	220	292	363
3	49	115	186	261	341	421
4	56	128	205	283	367	449
5	61	137	216	297	382	466
6	65	143	224	306	392	476
7	68	147	229	312	399	484
8	70	151	233	317	403	489
9	71	153	236	321	407	493
10	73	155	239	324	410	496

Table 8: Access Control Queue Lengths

It is expected that up to 136 vehicles will enter the site during the PM peak hour (highest entering peak).

23

Given a peak hour volume of 136 vehicles entering the development the traffic ratios for each control type are indicated in **Table 9** below.

Peak Hour Trips - IN (PM Peak Hour) Access Control Options	136 Flow (Vph)	Traffic ratio	Q-Length Veh	Lanes Required	Q-Length (m)
Swipe Magnetic card	480	39.0	2	1	13
Remote controlled gates	450	39.0	2	1	13
Ticket Dispenser: Automatic	390	39.0	2	1	13
Ticket Dispenser: Pushbutton	220	39.0	2	1	13
Pin number operated gates	150	115.0	3	2	19.5
Cell-phone operated gates (opens when call received)	100	153.0	2	3	13
Manual Recording (Visitor Completes form)	80	205.0	4	3	26
Intercom Operated Gates (Contact resident by Intercom)	50	306.0	6	42	39

Table 9: Access Control Queue Lengths for erf 2074

As indicated in **Table 9**, a number of options are possible, all requiring a minimum of one entry lane and the access gate set back a minimum of 6.5m (one vehicle length) from the road edge, apart from the pin or cell-phone number operated control which requires the gate set back 13m and 19.5m respectively.

It is recommended that two entry lanes be provided at the entrance to ensure that no delays are caused by visitors obstructing access and such that any potential queue does not impact on access to erf 2073 and subsequently extend into Marine Way.

7.3 EMERGENCY ACCESS

Provision has also been made for two additional secondary access points between the development and the municipal road network to the east via Cutty Sark Avenue and Ariel Drive.

These access points will be gated and locked and only opened should an emergency, e.g., a fire in the complex, result in access via the main entrance from Marine Way being compromised.

8 CAPACITY ANALYSIS – AFTER DEVELOPMENT

8.1 2025 AFTER DEVELOPMENT

After adding generated and reassigned peak hour traffic volumes to the escalated background peak hour volumes, the traffic situation was analysed in order to determine the LOS at which the affected intersections and access points would operate during normal weekday peak hours after development occurs.

The results are shown in Table 10 below and the detailed SIDRA output sheets attached as Annexure F.

24

Table 10: Results of Intersection Capacity Analysis – 2025 After Development

Intercetion	Delay		V/C		LOS*	
intersection	АМ	РМ	AM	PM	АМ	PM
Marine Way / Ultra-City	5.6	6.0	0.457	0.550	Α	А
Marine Way / Challenge Drive	6.8	6.5	0.599	0.695	А	А

* - **SIDRA Intersection Network**⁽⁸⁾ does not calculate intersection LOS for stop-controlled intersections. The LOS indicated is sourced from the **Highway Capacity Manual**⁽⁷⁾ (**Table 2** above).

As can be seen from the results contained in **Table 10**, the additional traffic generated by the development has little or no impact on the operation of the affected intersections in terms of capacity.

8.2 2030 AFTER DEVELOPMENT

After adding generated and reassigned peak hour traffic volumes to the escalated background peak hour volumes, the traffic situation was analysed in order to determine the LOS at which the affected intersections and access points would operate after development occurs for the 2030 development horizon.

The results are shown in Table 11 below and the detailed SIDRA output sheets attached as Annexure G.

Intersection	Delay		V,	/c	LOS*	
intersection	АМ	РМ	АМ	РМ	АМ	PM
Marine Way / Ultra-City	5.8	6.3	0.515	0.632	А	А
Marine Way / Challenge Drive	7.4	7.0	0.675	0.773	А	А

Table 11: Results of Intersection Capacity Analysis – 2030 After Development – Normal

* - **SIDRA Intersection Network** ⁽⁸⁾ does not calculate intersection LOS for stop-controlled intersections. The LOS indicated is sourced from the **Highway Capacity Manual** ⁽⁷⁾ (**Table 2** above).

As can be seen from the results contained in **Table 11**, the additional traffic generated by the development has little or no impact on operation of the affected intersections in terms of capacity for the 2030 development horizon.

8.3 2030 AFTER DEVELOPMENT – PEAK SEASON

F

After adding generated and reassigned peak hour traffic volumes to the escalated background peak hour volumes, the traffic situation was analysed in order to determine the LOS at which the affected intersections and access points would operate after development occurs for the 2030 peak season development horizon.

25

The results are shown in Table 12 below and the detailed SIDRA output sheets attached as Annexure H.

Table 12: Results of Intersection Capacity Analysis – 2030 After Development – Peak Season

Intersection	Delay		v/c		LOS*	
intersection	АМ	РМ	AM	РМ	АМ	РМ
Marine Way / Ultra-City	6.2	7.8	0.645	0.816	Α	А
Marine Way / Challenge Drive	11.4	11.9	0.843	0.948	В	В

* - SIDRA Intersection Network ⁽⁸⁾ does not calculate intersection LOS for stop-controlled intersections. The LOS indicated is sourced from the Highway Capacity Manual ⁽⁷⁾ (Table 2 above).

As can be seen from the results contained in **Table 12**, when considering peak season traffic, the additional traffic generated by the development has minimal impact on operation of the affected intersections in terms of capacity during a typical peak season weekday.

It is noted however that the LOS at the Challenge Drive intersection operates at LOS B during both peak hours.

9 PUBLIC TRANSPORT OPERATIONS AND PEDESTRIAN ARRANGEMENTS

Neither additional public transport nor pedestrian facilities are required.

10 PARKING REQUIREMENTS

A total of 2 bays plus a further 0.25 visitor bays per unit will be required in terms of the requirements of the **Bitou Municipality Zoning Scheme Bylaw**⁽⁴⁾ and will be provided on the site.

27

The required parking provision can be accommodated on site and will be indicated on the Site Development Plan to be submitted to the Bitou Municipality.

11 CONCLUSIONS

The following conclusions can thus be drawn from the study:

- Under escalated (2025) background normal traffic conditions no problems are experienced at the affected intersections in terms of capacity apart from the Marine Way / Ultra City access which operates at LOS F during the PM peak hour;
- Configuration of this intersection as a roundabout results in a significant improvement in operation to LOS A;
- Based on 2019 daily traffic surveys at the N2 Goose Valley counting station volumes on 14 August equate to 44% of the Highest daily volumes during December. The average daily volumes during December represent 70% of the highest volumes are considered a more realistic measure to compare to. As such the surveyed peak hour volumes have been escalated by 1.59 to provide an indication of the impact of the development during average daily peak season traffic conditions;
- The proposed development generates a total of 228 peak hour vehicle trips during the weekday AM and PM peak hours with a maximum of 136 entering during the PM peak hour;
- Access to the development can safely be accommodated from Marine Way (MR00383) at the Challenge Drive intersection provided the access is configured as indicated on **Figure 15**;
- Access to the adjacent development on erf 2073 will also be gained via the erf 2074 access and across erf 2074 as indicated on **Figure 15**;
- Access control gates to the development on erf 2074 should be configured with a minimum of two entry lanes set back a minimum of 19.5m (3 car lengths) from the erf 2073 access road so that entering vehicles do not block access to erf 2073 as indicated on **Figure 15**;
- Additional secondary access points to the municipal road network to the east via Cutty Sark Avenue and Ariel Drive will be provided for use should an emergency arise in the complex comprising the main access onto Marine Way;
- When considering the traffic generated by the proposed development added to escalated background traffic, the affected intersections and access points all operate at acceptable Levels of Service in terms of capacity for the 2025 development horizon for normal season traffic conditions with the Ultra City intersection configured as a roundabout;
- When considering the traffic generated by the proposed development added to escalated background traffic, the affected intersections and access points all operate at acceptable Levels of Service in terms of capacity for the 2030 development horizon for normal season traffic conditions with the Ultra City intersection configured as a roundabout; and
- When considering the traffic generated by the proposed development added to escalated peak season background traffic, the affected intersections and access points all operate at acceptable Levels of Service in terms of capacity for the 2030 development horizon with only the Challenge Drive intersection LOS worsening slightly from A to B.

12 RECOMMENDATIONS

In view of the findings of this study, it is recommended that:

- This Traffic Impact Assessment be approved by the Bitou Local Municipality;
- The Bitou Municipality consider reconfiguring the Marine Way / Ultra City intersection as a roundabout as it operates at LOS F during the PM peak hour under current conditions;
- The main access to the development be provided from Marine Way (MR00383) at the Challenge Drive intersection;
- Secondary locked access gates be provided at Cutty Sark Avenue and Ariel Drive for use in the event
 of emergency(ies); and
- The main access gate to erf 2074 be set back a minimum of 20m from the erf 2073 access road and the access be configured with two entering lanes as indicated on **Figure 15** with the cost of access arrangements being met by the developer.

13 REFERENCES

- 1. Joubert, Sampson, et al, TMH 16 Volume 1- South African Traffic Impact and Site Assessment Manual, COTO, September 2013.
- 2. Joubert, Sampson, et al, TMH 17 Volume 1- South African Trip Data Manual, COTO, September 2013.
- 3. *Roads Branch, ITS Engineers, K&T, CNdV Africa, et al,* **Transport and Public Works, Access Management Guidelines**, Western Cape Government Transport and Public Works, 2020.
- 4. *Bitou Local Municipality*, **Bitou Municipality Zoning Scheme By-law (Extraordinary Gazette 8801)**, Bitou LM, 28 July 2023
- 5. *F de Jongh & M Bruwer*, Quantification of the Natural Variation in Traffic Flow on Selected National Roads in South Africa, 2017.
- 6. *Bitou Local Municipality*, **Bitou Spatial Development Framework**, Bitou LM, 2021.
- 7. Transportation Research Board, Highway Capacity Manual, 2000.
- 8. Akcelik & Associates (Pty) Ltd, SIDRA Intersection Network 9 User Guide, SIDRA Solutions, April 2019.
- 9. Joubert, Sampson, et al, TMH 16 Volume 2- South African Traffic Impact and Site Assessment Standards and Requirements Manual, COTO, September 2013.
- 10. Bitou Local Municipality, Bitou Local Municipality Zoning Scheme Bylaw, Bitou LM, 28 July 2023

ANNEXURE A Town Planning Report

Remainder of Erf 2074 Plettenberg Bay

TOWN PLANNING REPORT

(Prepared as part of the Draft Basic Assessment Report)

7/17/2024

TABLE OF CONTENTS

1. Introduction	1
2. Property Information	1
2.1 LOCALITY	1
2.2 PROPERTY DESCRIPTION	2
2.3 BACKGROUND	
2.4 SITE CHARACTERISTICS	4
2.4.1 TOPOGRAPHY	4
2.4.2 VEGETATION	4
2.2.3 AQUATIC BIODIVERSITY	5
2.4.4 SOIL	6
2.4.5 IMPROVEMENTS	7
2.4.6 SERVITUDES AND OTHER RESTRICTIONS	7
3. Proposal	8
3.1 DEVELOPMENT CONCEPT	
3.2 THE DEVELOPMENT FOOTPRINT	
3.3 ACCESS	9
3.4 DENSITY	9
3.5 PROPOSED REZONING AND SUBDIVISION	10
3.5.1 ZONING	10
3.5.2 SUBDIVISION	10
3.6 ENGINEERING SERVICES	11
3.7 PLANNING PERMISSIONS REQUIRED	11
3.7.1 APPLICATIONS TO THE BITOU MUNICIPALITY IN TERMS OF THE BITOU MUNICIPALITY:	STANDARD
MUNICIPAL LAND-USE PLANNING BY-LAW (2016)	11
3.7.2 NATIONAL HERITAGE RECOURSES ACT 25 OF 1999	12
3.7.3 SUBDIVISION OF AGRICULTURAL LAND ACT 70 OF 1970	12
3.7.4 APPLICATION TO SANRAL IN TERMS OF THE SOUTH AFRICAN NATIONAL ROADS AGENO	CY LIMITED
AND NATIONAL ROADS ACT, ACT 7 OF 1998	12
3.7.5 ADVERTISING ON ROADS AND RIBBON DEVELOPMENT ACT 21 OF 1940	12
3.7.6 OUTENIQUA SENSITIVE COASTAL AREA REGULATION	13

Need & Desirability13	3
4.1 NEED	3
4.1.1 THE NEED FOR AFFORDABLE HOUSING1	13
4.1.2 SOCIO-ECONOMIC NEED OF THE LARGER COMMUNITY1	.5
4.2 DESIRABILITY OF THE SITE TO ACCOMMODATE THIS DEVELOPMENT	6
4.2.1 PHYSICAL SITE CONSTRAINTS AND OPPORTUNITIES1	6
4.2.2 COMPATIBILITY WITH THE SURROUNDING AREA1	.6
4.2.3 COMPATIBILITY WITH APPLICABLE FORWARD PLANNING DOCUMENTS1	17
4.2.3.1 National Development Plan (NDP 2030)1	.7
4.2.3.2 Western Cape Provincial Spatial Development Framework 20141	.8
4.2.3.3 Bitou Spatial Development Framework 2021	.8
4.2.4 COMPLIANCE WITH SPLUMA DEVELOPMENT PRINCIPLES	20
4. 2.4.1 Spatial Justice	21
4.2.4.2 Spatial Sustainability2	21
4.2.4.3 Spatial Efficiency2	1
4.2.4.4 Spatial Resilience and Good Administration2	!1
. Summary22	2

LIST OF PLANS

Diagram 1: Locality Plan
Diagram 2: Aerial Photo
Diagram 3 Zoning Map
Diagram 4: Land Use Map
Diagram 5: Surveyed Contour Plan and Slope Analysis
Diagram 6: Terrestrial Biodiversity Map
Diagram 7: Constraints Map and development footprint
Diagram 8: Site Development Plan

LIST OF ANNEXURES:

Annexure A: Power of Attorney and Company Resolution Annexure B: Title deed Annexure C: SG Diagrams Annexure D: Conveyancer Certificate

1. Introduction

Planning Space Garden Route Pty Ltd has been appointed by Eco Route Environmental Consultants to prepare a Town Planning Report to inform the Basic Assessment Report (BAR) to be submitted for Environmental Authorisation in terms of the National Environmental Management Act, 1998 (NEMA) in respect of listed activities that have been triggered by the planned residential development on the Remainder Erf 2074 Plettenberg Bay.

The purpose of this document is to report on the existing land use rights, biophysical opportunities, and constraints of the property, and to assess the need and desirability of the project in terms of the planning policies and principles contained in National, Provincial, and Municipal Spatial Development Frameworks applicable to the area.

2. Property Information

2.1 LOCALITY

The property is situated in the Bitou Municipal area, Plettenberg Bay (See Diagram 1: Locality Plan). The property can be accessed directly from Marine Drive which connects with the N2. The site is approximately 330m east of the Marine Drive/N2 intersection and approximately 1km from the Plettenberg Bay Central Business District (CBD).

Figure 1: Extract indicating the locality of the subject property.

2.2 PROPERTY DESCRIPTION

Title Deed Description	Remainder of Erf 2074 Plettenberg Bay
21 Digit code	C03900080000207400000
Title Deed Number	T54527/1981
S.G. Diagram Nr	S.G 1693/1901
Title Deed Restrictions	None, relevant to the application: A Conveyancer Certificate dated 2006
	confirms that there are no title deed restrictions in the current title deed that
	will prohibit a residential development on the property.
Servitudes	None
Property Size	6.2ha
Property Owner	DUINESAND (EIENDOMS) BEPERK
Bonds	None
Zoning	Agriculture 1 in terms of the Bitou Zoning Scheme By-Law
Land Use	Rural Residential
2.3. BACKGROUND

The property is one of the last remaining Agricultural smallholdings set within the urban fabric of Plettenberg Bay. The property has been in the ownership of the current owners since 1981. There is an old farmhouse and outbuilding on the site. Photographic evidence suggests that the property has been under cultivation since 1938. Currently, the land is not being actively farmed. However, remnants of its agricultural past, such as an olive grove and protea orchard, still exist, though they are not maintained.

Figure 2: Old Farmhouse and outbuilding.

In 2006, an application for the rezoning and subdivision of the land into 32 Single Residential Erven, 1 General Residential Erf and Open Spaces and Streets, was submitted to the Plettenberg Bay Municipality. For reasons unknown, the application was never concluded.

In August 2012, an application was made for a second dwelling which allowed a new house to be constructed in the southern portion of the site. The application was approved, and the house construction commenced but was never completed. Remnants of the building footprint and access road still exist.

Figure 3: Remains of additional dwelling.

2.4 SITE CHARACTERISTICS

2.4.1 TOPOGRAPHY

The northern portion of the property has an even gradient sloping in a north direction toward Marine Drive. The middle section of the property is very even with a slight western slope. The southern section of the site slopes in a southwestern direction toward the Piesang Valley and is very steep.

A detailed Contour Plan and Slope Analysis was prepared by Shaun McMillan and is attached as Diagram 5 and Figure 4.

The slope analysis indicates that the entire northern and central section of the site has a gradient of less than 25% and is therefore suitable for development. Development on steep slopes with a gradient > 1:4 is in general not supported due to erosion and stability concerns. Only the steep cliffs in the southern portion of the site are not suitable for development. This section (indicated as pink in the adjacent Figure 4) measures about 1ha in extent.

There are no mapped water courses within the boundaries of RE/2074. However, according to the Aquatic statement from Confluent Environmental, there is a non-perennial drainage line flowing south on the neighbouring property to the west, which connects with the Piesang River.

Figure 4: Contour Plan.

2.4.2 VEGETATION

Historically the vegetation on the site has been disturbed since 1938 until the present by various activities, including small-scale agriculture, the introduction of alien vegetation, vegetation clearing as well and the construction of the farmhouses.

The mapped vegetation type at the site is South Outeniqua Sandstone Fynbos which is labelled as "Least Concern". Confluent Environmental was contracted by Eco Route to undertake a specialist assessment of the botanical and terrestrial sensitivity of the Remainder of Erf 2074. The vegetation Report is attached as an Annexure to the Draft BAR.

The study concluded that the northern section has a low terrestrial biodiversity and that the southern side has a very high terrestrial biodiversity. The red broken line on the attached Vegetation Map (Figure 5) indicates the divide between the southern and the northern areas. Some of the southern areas identified as having high biodiversity have been disturbed by agricultural activity in the past.

The Biodiversity Spatial Plan for the Western Cape (WC BSP) excludes the majority of the Remainder of Erf 2074 from the conservation planning areas (Figure 6). Only the southernmost section of the site, i.e., the valley and a section of the fynbos habitat on the site, is mapped as a terrestrial critical biodiversity area (CBA1).

The only connectivity to a wider natural area is along the southern boundary of the site where it connects to the valley below. The report therefore recommends that the development should avoid the southern section of the site – which also contains the most pristine vegetation on the site and the steep slopes. The proposed development footprint slightly encroaches over the recommended line proposed by the Terrestrial Biodiversity Report but aligns with the development footprint of the adjacent residential development. The proposal still permits more than 1ha of conservation area along the southern slope of the land that will tie in with the existing green belt along the Piesang Valley.

Figure 5: Vegetation Map.

Figure 6: Critical Biodiversity Area Map.

2.2.3 AQUATIC BIODIVERSITY

The property is situated in a catchment area of the Piesang River and the Aquatic Biodiversity sensitivity for RE/2074 was therefore identified as Very High according to the DFFE Screening Tool. Confluent Environmental

Pty (Ltd) was appointed by Eco Route Environmental Consultancy to conduct an aquatic assessment for a proposed residential. The Report is attached as an Annexure of the Draft BAR.

The Report confirms that the site has no watercourses or wetlands within its boundaries. The property is located on a watershed with approximately half of the property draining to the north and the other half draining to the south. The northern drainage would indirectly drain to the Keurbooms River via stormwater in urban areas, while the southern drainage would drain more directly to the Piesang River via a non-perennial drainage line flowing south on the neighbouring property to the west which connects with the Piesang River.

The Report recommends a **48 m** buffer for the adjacent drainage line. For the most part, this buffer is aligned with the southwestern boundary of RE/2074, but a small area intrudes into the property boundary near the corner of the property (refer to Figure 7).

Figure 7: Drainage Line and buffer on the adjacent property.

Stormwater management has been identified as an important consideration due to the proximity of this drainage line. Although the planned development footprint will include the southern section of the watershed or any potential impacts to the drainage line on the neighbouring property or the Piesang River can be effectively managed to minimise any negative impact.

The Stormwater Management Plan will be based on implementing SUDS-type stormwater management systems to encourage water infiltration, improve runoff quality, and minimise runoff velocities throughout the proposed development. The project Engineers proposed in the Engineering Services report that The City of Cape Town norms for SUDS will be adopted for this project. The attenuation criteria are that stormwater be detained to reduce the post-development runoff rates not to exceed the pre-development rates for the 1 in 10-year and 1 in 50-year return storm intervals. This will include vegetated swales along the eastern boundary and permeable paving.

2.4.4 SOIL

The soil conditions of the site have not been investigated yet. The generally observed geology of the site is mostly sandstone with relatively nutrient-poor sandy soil and poses no risk for development.

2.4.5 IMPROVEMENTS

There is an existing farmhouse that may be older than 60 years and some outbuildings on the site. It is the intention to preserve the original farmhouse and to use it as a communal facility on the planned estate.

The building footprint of the additional dwelling in the southern section of the property will be preserved and can be used as a lookout point or viewing deck for residents.

2.4.6 SERVITUDES AND OTHER RESTRICTIONS

There are municipal services along the eastern boundary of the property. The exact position of the services is unconfirmed, but indications are that they are within the 3m building line. A servitude will be registered to protect these services once the municipality has indicated the correct position.

Marine Drive Road reserve traversed through the northern section of the property and was subdivided off the Remainder of the property in 2013 (Unregistered Erf 12706 measuring ±2963m²).

Presently there is an ongoing dispute that involves access to the Thulana Hills development situated on the adjacent Erf 2073, directly to the west of the Remainder of Erf 2074. Temporary access to Thulana Hills was approved directly from the N2 but the municipality unlawfully set a condition that requires that Phase II of the Thulana Hills development must derive access to and egress from the development over the Remainder of Erf 2074, to connect to the traffic circle to the east of the Remainder of Erf 2074, without the owners of the Remainder of Erf 2074 consenting to such arrangements. There is also a further condition to the approval of the Thulana Hill development [Condition 2 (j)] of the rezoning approval dated 25 January, which requires that "the cost of incurring for the construction of the circle be proportionally reimbursed by the owner of the Remainder of Erf 2074 as and when this property is developed" (bearing in mind that the developer of Erf 2073 will in return be responsible for the land and the construction cost to provide a road via the Remainder of Erf 2074).

To date, the matter has not been resolved, but with the planned development on the Remainder of Erf 2074, there is an opportunity to finally resolve the issue. Presently the communication with the owner of Erf 2073 is ongoing and an agreement will be reached. The layout makes provision for a 6m access road over Erf 2074, parallel to Marine Drive. The access design will be done by a qualified Traffic Engineer and will eventually be protected by way of an access servitude.

3. Proposal

3.1 DEVELOPMENT CONCEPT

The aim is to develop a medium/high-density residential development that caters for an identified need for affordable residential units for the middle-income bracket. The prefered Concept Proposal includes about 228 2 and 3-bedroom apartments in 3-storey buildings. Each unit will be between 100m² and 130m² in size.

The intention is to have 3 or 4 phases that can be developed as the market demands. A certain level of flexibility in design is required to allow the development to respond to a changing market. It is proposed that individual Site Development Plans be submitted to the Local Authority for each phase. The proposal currently on the table presents the maximum number of units that can be achieved taking into account the site characteristics, position of the existing structures and infrastructure development parameters of the Zoning Scheme, as well as parking and access requirements.

3.2. THE DEVELOPMENT FOOTPRINT

The biophysical site characteristics described in Section 2.4 determined the development footprint. The site poses very limited constraints. In summary, the following site constraints were identified and excluded from the development footprint:

- Steep slopes in the southern area.
- Sensitive vegetation in the southern area
- Services along the eastern boundary line.
- Access consideration to Erf 2073.
- Access from the constructed traffic circle on Marine Drive.
- Existing farmhouse (heritage implications).

The developed footprint measures ±5ha as indicated in Diagram 7 attached.

3.3 ACCESS

The site access will be from the traffic circle on Marine Drive that was originally constructed to accommodate the access requirements of the development of Erven 2073 and the Remainder of Erf 2074. The layout also makes provision for Erf 2073 to gain access over the Remainder of Erf 2074.

Access via the circle is possible over an access servitude that was registered over Erf 1726 (Public Place) See Diagram 6325/2008 attached as Annexure C.

Secondary connections to the existing road network from Cutty Shark and Ariel Street are proposed, especially as an emergency exit for the development or the

Figure 8: Access Servitude to access the circle.

residents of Cutty Sark. The Traffic Impact on the existing residential road network will be assessed in the Traffic Impact Assessment.

EAS Consulting Engineers will be appointed to assess the extent and nature of the traffic generated by the proposed development, the impact of this traffic on the operation of the associated road network, and devise solutions for any problems identified.

The internal road network will be privately owned and will consist of landscaped lanes and parking.

3.4 DENSITY

The developer wants to provide a high-quality yet affordable housing product. To make this project financially viable and responsive to the target market, the cost of land, services and building costs need to be limited and to do so, a certain economy of scale needs to be attained. The most relevant design aspect to achieve this is development density.

The property is ± 6.2 in size and the draft SDP2 proposes 228 units of approximately $100m^2 - 130m^2$ each, which calculates to a gross density of ± 36.7 units per ha. The nett density is calculated excluding the undevelopable steep slopes and natural vegetation to the south of the site. The identified development area measures approximately 5ha and 228 units will calculate to a nett density of ± 45.6 units per ha.

The density is in line with the SDF which earmark areas medium-density housing (3-4 storeys).

3.5 PROPOSED REZONING AND SUBDIVISION

3.5.1 ZONING

It is proposed to rezone the property to "General Residential II" which permits flats, group housing and townhouses as primary rights.

Land use description: "Flats" means a building containing three or more dwelling units of which at least one does not have a ground floor, together with such outbuildings, open space and private roads as are ordinarily associated with flats.

Development parameters:

(a) Coverage

The maximum coverage is 60%.

(b) Floor factor

The floor factor may not exceed 1,5.

- (c) Height
 - (i) The highest point of a building may not exceed 10,67 metres
 - (ii) The general provisions regarding earth banks and retaining structures in this By-law apply.

(d) Building lines

- (i) The street building line is at least 5 metres.
- (ii) Side and rear building lines are at least 4,5 metres,
- (iii) The general building line encroachments in this By-law apply.
- (e) Parking and access
 - 1.5 bays per unit in PTA1 areas

The proposed concept site plan complies with the development parameters stipulated above.

3.5.2 SUBDIVISION

The intention is to phase the development. To implement the phasing it is proposed to subdivide the development into 3 or 4 phases.

3.6 ENGINEERING SERVICES

Poise Structural and Civil Engineering Design Consultants have been appointed to investigate the supply and demand of the services for the proposed development. The Report is attached to the Draft BAR. The report confirms that the property is situated within an urban area where services are available, and the development can easily connect to these services.

An electrical bulk service report is outstanding at this stage but will be requested.

A GLA Report will be requested to report on the bulk capacity of the municipality. In general, it is known that the Bitou Municipal Infrastructure networks require upgrades and capacity. However, the Bitou Spatial Development Plan states that engineering services are critical towards the establishment of sustainable human settlements and facilitating economic development and job creation. Hence, infrastructure investment within the Bitou Local municipality should primarily be focussed on:

- Maintaining existing infrastructure and associated equipment, and
- Expanding infrastructure to serve the identified Strategic Development
- Areas (and Potential Development Areas) within the municipal area

3.7 PLANNING PERMISSIONS REQUIRED

3.7.1 APPLICATIONS TO THE BITOU MUNICIPALITY IN TERMS OF THE BITOU MUNICIPALITY: STANDARD MUNICIPAL LAND-USE PLANNING BY-LAW (2016)

- (i) Rezoning in terms of Section 15 (2) (a) of the said Bylaw: The property is currently zoned "Agricultural I" in terms of the Bitou Zoning Scheme By-Law applicable to the area. To facilitate the development of the land the property will have to be rezoned to a "General Residential II".
- (ii) Subdivision in terms of Section 15 (2) (d) of the said Bylaw: It is the intention to sell the units as sectional title. The development will however be phased and a Subdivision Plan indicating the different phases, private roads and communal open space will be submitted.
- (iii) Approval of Site development Plan: Once the property has been successfully rezoned and subdivided, each Phase of the development will be subject to the approval of a detailed Site Development Plan that will have to comply with any conditions of approval and development parameters as set out in the Bitou Zoning Scheme By-Law.

3.7.2 NATIONAL HERITAGE RECOURSES ACT 25 OF 1999

The rezoning of more than a hectare of land requires approval in terms of Section 38 of the Heritage Resources Act. A Notice of Intent to Develop (NID) must be submitted to Western Cape Heritage. In 2006 a Heritage approval was obtained for the previous development proposal without the need for further heritage assessments such as archaeological assessment, palaeontology assessment or visual impact assessments.

3.7.3 SUBDIVISION OF AGRICULTURAL LAND ACT 70 OF 1970

The property was originally earmarked in the Knysna Wilderness Plettenberg Bay Guide plan for "Township" purposes and does not have a farm number and therefore does not form part of the agriculture register. This means that although the property is zoned for agricultural purposes, it is not subject to the provisions of the Subdivision of Agricultural Land Act (Act 70 of 70).

Agriculture will be requested to comment on the rezoning application.

Figure 9: Extract from Knysna Wilderness Plett Guide Plan.

3.7.4 APPLICATION TO SANRAL IN TERMS OF THE SOUTH AFRICAN NATIONAL ROADS AGENCY LIMITED AND NATIONAL ROADS ACT, ACT 7 OF 1998

The property is situated within a building restriction area as defined in Act 7 of 1998. A building restriction area means the area consisting of land (but excluding land in an urban area) situated alongside a national road within a distance of 60 metres from the boundary of the national road or situated within a distance of 500 metres from any point of intersection with the road. The proposed access to the development is approximately 420m from the Intersection with the N2 but within an urban area. A formal approval from SANRAL may not be required, but the application will be forwarded to them for comment.

3.7.5 ADVERTISING ON ROADS AND RIBBON DEVELOPMENT ACT 21 OF 1940

The Surveyor General may not approve a General Plan or the diagrams of erven situated wholly or partly outside an urban area if any part of any such erf, lot, or holding falls within a distance of 95m of the centre line of a building restriction road or of a main road, or within 500m of an intersection with a similar or national road, without written approval from the controlling authority concerned.

The property borders a Main Road (Marine Drive), and it is our understanding that the road falls under the jurisdiction of the Provincial Roads authority.

There are also Conditions in the Title Deed that prevent the subdivision of the property without the consent of the controlling authority in terms of Act 21 of 1940.

An application to the Western Cape Road Authority will be required.

3.7.6 OUTENIQUA SENSITIVE COASTAL AREA REGULATION

Certain areas have been designated as sensitive in terms of these regulations and require approval from the local municipality should activities such as clearance of vegetation and earthworks be undertaken. The property has not been listed as within the identified OSCAE area.

4. Need & Desirability

In terms of the Promotion of Administrative Justice Act, 2000 (Act No. 3 of 2000) ("PAJA") all administrative action must be based on the "relevant considerations". NEMA and the EIA Regulations highlight specific considerations which include specifically having to consider "**the need for and desirability of the activity.**"

4.1 NEED

4.1.1 THE NEED FOR AFFORDABLE HOUSING

The first question that needs to be asked when any development is considered is whether there is a need for the contemplated land use. This is normally a question that the potential investor would answer before he embarks on a long and expensive application process. Development, like any other business, is about supply and demand.

It is a well-documented fact that the Garden Route is becoming increasingly popular among people who want to seek a quieter lifestyle and move out of the cities.

According to the 2021 Socio-Economic Profile of the Bitou Municipality prepared by the Western Cape Provincial Government, the population of Bitou is 69 321 people in 2021, making it the most populated municipal area in the Garden Route District (GRD). This total is expected to grow to 77 243 by 2025, equating to an average annual growth rate of 2.7 per cent. Statistics show that historically most people moving to the Bitou area are from the Eastern Cape. Most of these people are poor, low-skilled individuals who are searching for employment opportunities. Although most of the population growth and subsequent housing needs are in the poorer communities, there is also a known need for middle-income properties in Plettenberg Bay.

There is currently a "semigration" trend, with many people from Gauteng and KwaZulu/Natal moving to smaller towns in the Western Cape. It seems that Covid-19 has caused a lot of people to introspect and reevaluate their priorities, which has led to the current influx of affluent city dwellers to the Garden Route. This leads to a situation where demand, and therefore property prices, are well above national averages.

According to a recent Article in the Financial Mail, the average value for a property in Plett increased by 24% from 2020 to 2021 to R3million, a further 9% in 2022 to R3,3million and 26% to R4,2million in 2023. Entry-level asking prices in Plett have increased considerably over the past 4 years. It is now almost impossible to find full-title homes below R3,500,000.

The Plettenberg Bay area historically has very few housing opportunities for middle-income earners. The mentioned influx of higher-income families moving to the area and subsequent sharp increases in housing prices have further exacerbated the lack of affordable housing. Many residents are displaced as property values rise to the point of unaffordability. This displacement of the middle class and lack of affordable housing has a tremendous effect on the economy of the town, as the middle-class workforce actively contributing to these economies can no longer afford to live here.

In the coming years, it is critical that the housing shortage in the middle-income bracket be addressed to ensure the efficient functioning of the Plettenberg Bay The economy. Spatial Development Framework of the town has also identified this need and has identified Strategic Development Areas where affordable housing should be a priority. This development aims to address the housing need of the middle-income earners who live and work in the area and are situated in an

area that has been identified as suitable for this type of housing typology. **Figure 10: Property sales and prices between 1997 and 2023.**

4.1.2 SOCIO-ECONOMIC NEED OF THE LARGER COMMUNITY

South Africa has an ever-increasing challenge of high unemployment and skills shortages. At the end of 2018, the unemployment rate was reported to be 27,2%5. One of the main goals that South Africa has set itself in the National Development Plan, is to reduce poverty and to cut the unemployment rate to 6% by 2030. Notwithstanding decades of legislated environmental impact assessment and integrated development planning, *"poverty remains endemic ".*

The planned residential estate stands to contribute positively to the economic growth of the area by creating job opportunities for the local community without detrimentally affecting the environment. It will create construction jobs for local contractors and labourers. The employment opportunities associated with the construction phase are frequently regarded as temporary employment. However, while these jobs may be classified as "temporary" it is worth noting that the people employed in the construction industry by its very nature rely on "temporary" jobs for their survival. In this regard "permanent" employment in the construction sector is linked to the ability of construction companies to secure a series of temporary projects over some time. Each development, such as the proposed development, therefore, contributes to creating "permanent" employment in the construction sector.

The construction industry is an important player in job creation, not only in the construction sector but in other sectors of the economy as well. The construction industry uses a wide range of inputs such as manufacturing of construction materials and equipment, mining of raw materials, forestry, transportation, real estate, finance, and professional services which all contribute indirectly to more jobs that are created across several sectors.

Plettenberg Bay has a very similar demographic profile to the rest of the country. Socio-economic studies indicate high levels of poverty and unemployment. The social needs of the larger community form part of the "surrounding environment" and should receive due consideration when new developments are investigated. The "ripple effect" that a development of this scale has on the local economy and social well-being of the community cannot be ignored.

4.2 DESIRABILITY OF THE SITE TO ACCOMMODATE THIS

DEVELOPMENT

Desirability factors relate to place. Is the land physically suitable to accommodate the proposed development? Does the proposed development fit in with the surrounding land uses? Is the proposal compatible with credible spatial plans? Is there perhaps a better land-use alternative for the land parcel?

4.2.1 PHYSICAL SITE CONSTRAINTS AND OPPORTUNITIES

Diagram 7 provides a summary of the site constraints that were considered when the development footprint was identified. The site has limited constraints, the 5ha development footprint excludes steep areas and provides an opportunity to conserve the southern slopes for conservation purposes.

The planned residential footprint however extends over the vegetation sensitivity divide proposed in the Terrestrial Biodiversity Report, but the encroachment is motivated by the urban context of the site. The proposed footprint aligns with adjacent residential development to the east and west of the property and still permit a conservation corridor along the southern section of the site, similar to what has been allowed for on the surrounding properties. Given that the property has been identified as a strategic development area it should be considered that in some instance the development footprint should be optimised, and that some biodiversity loss will occur. This is still preferable to more development in outer areas where valuable farm land is sacrificed to cater for the growing housing need.

It can be concluded that the site has limited constraints and that the unique site characteristics will be preserved within the planned development. The site characteristic described above makes this site highly desirable for development.

4.2.2 COMPATIBILITY WITH THE SURROUNDING AREA

The property is situated along Marine Drive which is a major transportation route. The area has a mixed-use character as can be seen from the attached Zoning Map (Diagram 3) and Land Use Map (Diagram 4).

The Thulana Hills development directly to the west has a similar shape and size and has received planning permission for medium-density residential development of approximately 200 units. Phase 1 consisting of about 70 units has been implemented. Further west is Castleton, another medium-density residential development consisting of about 129 units and the Whale Song Hotel and Spa. To the east is the existing low-density residential neighbourhood known as Cutty Sark. Direct across the road from the Remainder of Erf 2074 are two more medium-density residential complexes, Santini Village which consists of about 120 units and

Laridae with about 24 units. Further along Marine Drive is a mix of residential, community and business use including Shell Garage to the west at the intersection with the N2, a Medical Clinic to the east and a church and the municipal depo and offices further east.

To provide further context for this density evaluation, the following table offers a comparative analysis with other developments in the vicinity.

DEVELOPMENT DENSITIES IN THE AREA													
Development	Property		Nr of	Property									
Name	Description	Height	Units	size	Density								
Thulana	2073	3 Storey	200	6ha	33u/ha								
Castleton	6527	3 Storey	129	11ha									
Santini Village	Re2317	3 Storey	120	2.7ha	44u/ha								
Laridae	3354	3 Storey	24	4808m²	50u/ha								
Fynbos Rand	RE/2074	3 Storeys	228	6.2ha	37u/ha								

It can be stated that the proposed development will not have any impact on the character of the area. The scale, nature and typology of the development are similar to surrounding developments.

Figure 11: View of Santini Village from the site.

4.2.3 COMPATIBILITY WITH APPLICABLE FORWARD PLANNING DOCUMENTS

Another test of the desirability of a project is by considering the broader communities' needs and interests as reflected in credible Spatial Development Frameworks on Local, Municipal, District, Regional, Provincial and National levels.

4.2.3.1 National Development Plan (NDP 2030)

The NDP aims to eliminate poverty and reduce inequality by 2030. According to the plan, South Africa can realise these goals by drawing on the energies of its people, growing an inclusive economy, building

capabilities, enhancing the capacity of the state, and promoting leadership and partnerships throughout society. Growth and jobs, education and skills, and a capable and <u>developmental state</u> are the main aims of this document.

South Africa is mandated by this Act to be a developmental state. In this light, it will be difficult for any decisionmaking body to deny any form of economic activity unless there are substantial negative environmental impacts that cannot be mitigated.

4.2.3.2 Western Cape Provincial Spatial Development Framework 2014

The PSDF 2014 has been approved by the Executive Authority, Minister Anton Bredell, Minister of Local Government, Environmental Affairs and Development Planning, and endorsed by the Provincial Cabinet. The Western Cape PSDF sets out to put in place a coherent framework for the province's urban and rural areas.

The Provincial SDF indicates George as the regional center for the eastern part of the province, with Knysna and Plettenberg Bay being smaller centres along the Regional Connector Route (N2). It earmarks the area along the Garden Route as a tourism route with leisure activities of provincial significance.

The sustainable use of provincial assets is one of the main aims of the policy. The protection of non-renewable natural and agricultural resources is achieved through clear settlement edges for towns by defining limits to settlements and through establishing buffers/transitions between urban and rural areas. The urban fringe must ensure that urban expansion is structured and directed away from environmentally sensitive land and farming land; agricultural resources are reserved; environmental resources are protected; appropriate levels of services are feasible to support urban fringe land uses, and land use allocations within the urban fringe are compatible and sustainable.

4.2.3.3 Bitou Spatial Development Framework 2021

The Bitou Spatial Development Framework 2021 was approved by the Council in March 2022. The main objective of this development framework is to achieve a balance between development and the environment to ensure that growth is spatially just, financially viable and environmentally sustainable by working towards compact, vibrant, livable, and efficient settlements serving all communities.

The protection natural of environmental resources of the area is fundamental to future economic development in the area as the two key economic sectors of the municipality (tourism and agriculture) are both resource-based. To protect these valuable resources, the Bitou SDF has defined an urban edge aimed at containing lateral urban sprawl within the municipality.

As conceptually illustrated in Figure 12, the property is situated in a firstorder settlement, where urban growth is promoted.

Figure 12: Spatial Vision/Concept.

As can be seen from the extract of the SDF map below, the property is situated within the urban edge of the Plettenberg town settlement which is regarded as the first-order settlement where most investment should be focused towards.

The property is also situated in an area that has been identified as a "Strategic Development Area", with the potential for medium-density (3 to 4-storey) residential development (SDA9).

The Strategic Development Areas are earmarked to accommodate the bulk of future residential development within the municipality are and graphically indicated by the orange areas in Figure 13 below.

The SDF points out that the development of land identified as a priority or Strategic Development Area should take into account the surrounding area(s) in terms of context, character, prevailing property values, aesthetics and other factors as may be determined by the Municipality, as to not unreasonably detract from the aforementioned aspects and general appeal of the area(s) in question. It is submitted that the proposal fits into the surrounding urban environment with similar land uses and densities found on Erf 2073 (Thulana Hills) directly to the west and RE/2317 (Santini Village) directly to the north.

Figure 13: Extract from SDF indicating that the property is situated in SDA9.

Furthermore, this area also forms part of the Restructuring Zones of the Bitou Local Municipality (i.e. it is intended to accommodate medium-density housing, including Social Housing).

The proposal completely aligns with the Spatial Planning proposals for the Bitou municipal area.

4.2.4 COMPLIANCE WITH SPLUMA DEVELOPMENT PRINCIPLES

In considering the application, the decision-maker needs to be guided by the DEVELOPMENT PRINCIPLES contained in (Chapter II) of the Spatial Planning and Land Use Management Act 2013 (Act no 16 of 2013) SPLUMA and Chapter VI of the Land Use Planning Act, 2014 (Act 3 of 2014) (LUPA).

Section 7 of the Act describes a set of development principles that need to be considered when evaluating any development application. These principles include the following:

4.2.4.1 Spatial Justice

Social justice targets the marginalised and disadvantaged groups in society. Spatial justice principles seek to eliminate spatial injustices that resulted from previous discrimination and marginalisation. Inequitable access to housing, educational and economic opportunities and health facilities are consequences of spatial injustice. The instruments used to promote spatial justice are varied and include Spatial Development Frameworks, Precinct Plans, and Urban Regeneration Plans and Policies which require government intervention. The development of this property in an identified Strategic Development Area can contribute to spatial reform and integration as it will allow 228 households to own a home in an established urban area which is near jobs, schools and other urban amenities.

4.2.4.2 Spatial Sustainability

Land development should be spatially compact, resource-frugal, compatible with cultural and scenic landscapes, and should not involve the conversion of high-potential agricultural land or compromising ecosystems. The proposal supports this principle of spatial sustainability in the sense that it proposes a more compact development of underutilised land within an existing urban area, thereby limiting the need for urban sprawl and encouraging the optimal use of existing urban land and services. The proposal does not impact on scarce resources such as valuable agricultural land or conservation-worthy natural environmental features.

4.2.4.3 Spatial Efficiency

Efficiency relates to the form of settlements and use of resources - compaction as opposed to sprawl; mixeduse, as opposed to mono-functional land, uses; residential areas close to work opportunities as opposed to dormitory settlement. The proposal supports the efficient use of existing resources and infrastructure with minimum negative financial, social, economic, or environmental impacts. The layout is compact and makes the best use of available land.

4.2.4.4 Spatial Resilience and Good Administration

These principles mostly relate to spatial plans, policies, land use schemes, and procedures, which, although important on a wider scale, do not have direct relevance to a proposal of this nature.

5. Summary

The Remainder of Erf 2074 measures about 6.2ha and is zoned for Agricultural I purposes. The southern section of the property has a steep gradient covered in sensitive vegetation while the northern and central areas have even gradients, and the vegetation has been historically disturbed. It is the vision of the landowner to create an affordable and sustainable housing project specifically targeting the middle-income group, in line with the identified need for affordable housing in the town.

The development is planned in the northern and central areas of the site while the southern section will be protected as a nature conservation area. At this stage, the layout proposes about 228 apartments of about 100-130m² in size with a communal open space that will include roads, infrastructure, parks and other amenities. This density is in line with other medium-density residential developments in the direct vicinity of the site.

The site is physically suitable for development and can cost-effectively connect to the existing municipal services networks that are located along the eastern boundary of the property.

The Bitou Spatial Development Framework earmarked the entire property for development and specifically earmarked the site as a priority development area for medium-density development. The proposal is in line with the long-term development vision of the town and will contribute significantly toward the need for housing stock, job creation and economic growth. ANNEXURE B Peak Hour Traffic Counts

Project :	Project : TIA : PROPOSED DEVELOPMENT ON ERF 2074, PLETTENBERG		ЗАҮ		Day & date : 30/8/2024			2024								
Intersection :	MARIN	E WAY / N2 WB	OFF R	AMP				NO. 1		Time per	riod:	06:00	- 09:00			
										1			14			
STARTING	WH	ALESONG HOT	EL		MARIN	IE WAY			-	1	MARINE W	AY	INTER-	AM PEAK HOUR	AM PEAK HOUR	AM PEAK HOUR
TIME		Northbound			Wes	tbound		Sout	nbound		Eastboun	ld	SECTION	2024	2025	2030
	Left	Thru Right T	otal	Left	Thru	Right Tota	al Left	Thru	Right Total	Left	Thru Rigl	ht Total	Total Hour			
6:00	C	0 0	0	0	7	0	7	1 (8 9	0	6	0	6 22	9 8 7	9 8 7	9 8 7
6:15	C	0 0	0	0	18	0	18	2 (5 7	7	14	0 2	46	74 0 66	76 0 68	86 0 77
6:30	1	0 0	1	0	27	0	27	3 (7 10	6	24	0 3	68	- , ⊥ ,		
6:45	C	0 0	0	0	63	4	67 1	0 1	11 22	13	51	1 6	5 154 290			
7:00	C	0 0	0	0	58	1	59	4 (13 17	12	53	0 6	5 141 409	$\frac{3}{10}$ 10 56 7 6		
7:15	C	0 2	2	0	129	0	129 1	0 0	17 27	13	140	0 15	3 311 674	$11 553 \rightarrow 535 5$	11 567 → 4 548 5	11 641 → 620 5
7:30	C	1 0	1	1	139	5	145 1	1 (19 30	1/	162	1 18	356 962			
7:45	2	0 1	3	0	136	0	136 2	2 (21 43	12	131	0 14	3 325 1133			
8:00		2 0	2	2	131	2	130 2		17 40	14	120	0 13	4 311 1303			
8:15	2	0 0	2 1	2	115	4	120 2		22 42	10	72	0 9	254 1246			
8:45		0 1	0	0	9J 74	5	70 1	6 1	25 32	8	57 78	0 10	10 249 1139	2 3	1 2 3	1 2 3
0.40 Totol		0 0	10	7	002	21 1/	13		10 30	121	049	2 109	1 2425			
Peak bour	2	3 4	12	7	535	7 1	545 6		74 140	56	553	1 61	0 1303	WHALESONG HOTEL	WHALESONG HOTEL	WHALESONG HOTEL
Peak 15 min		3 3	3	5	555	, ,	145		43	50	555	18	0 356			
PHF	1		0.67			0	.94		0.81			0.8	5 0.92			
<u> </u>			3													
Project :	TIA : P	ROPOSED DEVE	LOPM	ENT OI	NERF 2	074, PLETT	ENBERG	BAY		Day & da	ate :	30/8/2	2024			
Intersection :	MARIN	E WAY / N2 WB	OFF R	AMP				NO. 1		Time per	riod:	15:00	- 18:00	I N	N	N
STARTING	VVF	ALESONG HOT	EL		MARIN	IE WAY			-			AY	INTER-	PM PEAK HOUR	PM PEAK HOUR	PM PEAK HOUR
TIME		Northbound			vv es	tbound		Souti			Eastboun		SECTION	2024	2025	2030
45.00	Left	Inru Right I	otai	Left	Inru	Right I ota	al Left	Inru	Right Total	Left	Inru Rigi	nt I otal	Total Hour			
15:00		0 1	1	3	82	6	91 1	2 (16 28	11	31	0 4	2 162			-
15:15		0 2	2	0	102	4	00		18 30	10	00	0 7	4 212	g 8 /	9 8 7	g 8 /
15:45		0 1	1	1	92	0	93 2	4 9	22 40	10	100	1 15	0 300		134 0 24	152 0 27
16:00		0 1	0	1	75	2	79	+ (16 23	6	45	0 3	16 147 900			
16:15		3 0	3	1	64	2	65	2 0	10 33	7	/8	1 5	6 138 810			
16:30		1 3	7	0	07	0	07	8 0	17 25	15	90	0 10	130 013			
16:45	0	0 0	1	0	97 107	1	108 1		26 36	25	76	0 10	1 335 853			
17:00		1 1	2	0	181	0	181	3 0	20 30	23	95	0 10	9 339 1045	╡╵╴┍╸╸╸	│ [™] └───── [♥] ┥── ♠ ┌━♥ ┌─── [─] [→]	║ [┉] └───── [♥] ┥── ♠ ┌ → ♥ ┌─── [─] [→] │
17:15	1	1 2	4	5	192	0	197	2 (54 56	19	109	0 12	8 385 1292	2		
17:30		0 0	0	1	115	0	116		45 45	1	4	0 12	5 166 1225	4 3 6	4 3 6	5 3 7
17:45	0	0 0	0	0	12	0	12	0 0	12 12	14	19	0 3	3 57 947	1 2 3		
Total	4	6 11	21	12	1325	13 1	350 10	1 20	298 422	170	743	2 91	5 2651	1		
Peak hour	4	3 6	13	5	667	1 0	573 2	3 0	131 154	83	369	0 45	2 1292	WHALESONG HOTEL	WHALESONG HOTEL	WHALESONG HOTEL
Peak 15 min	1		7	5			198		56			12	8 385	1		
PHF	Ī		0.46			0	.85		0.69			0.8	8 0.84	1		

Project :	roject : TIA : PROPOSED DEVELOPMENT ON ERF 2074, PLETTENBERG BAY			RG BAY		Day & date : 30/8/2024								
Intersection :	MARIN	EWAY/ERF	2073				NO. 2		Time period:	06:0	0 - 09:00	- 1		- 1
STARTING		2073 ACCESS	6		MARINE WAY	(-		MARINE	WAY	INTER-	AM PEAK HOUR	AM PEAK HOUR	AM PEAK HOUR
TIME		Northbound			Westbound		Southbour	d	Eastbo	ound	SECTION	2024	2025	2030
	Left	Thru Right	Total	Left	Thru Right	Total	eft Thru Rigi	t Total	Left Thru F	Right Tota	I Total Hour			
6:00	0	0 0	0	0	5) 5	0 0	0	0 0 6	0	6 11	9 8 7	9 8 7	9 8 7
6:15	1	0 1	2	0	20	20	0 0	0	0 0 19	0	19 41	0 0 0	0 0 0	0 0 0
6:30	0	0 0	0	0	34) 34	0 0	0	0 0 34	0	34 68			
6:45	0	0 1	1	0	70	0 70	0 0	0	0 0 68	0	68 139 259	╢ ┌───┘、 ╡ ╴╅╺╪ <u>╷</u> └───┐	▌ ┌───┘ <u></u> ◀─┘ ▼ └──┐	▌ ┌───┘、 ╡ ╴ᆥ ╘ <mark>╸</mark> └───┐ │
7:00	0	0 2	2	1	61	0 62	0 0	0	0 0 72	0	72 136 384			
7:15	1	0 0	1	0	111	111	0 0	0	0 0 134	0 1	34 246 589			
7:30	2	0 2	4	1	137	138	0 0	0	0 0 100	1 1	167 309 830			
7:45	1	0 3	4	0	143	143	0 0	0	0 0 180	1 1	181 328 1019 140 201 1174			
8.15	3	0 2		1	140	140	0 0	0	0 0 139	1 1	140 291 1174	5 0 7	5 0 7	6 0 8
8.30	2	0 0		1	100	101	0 0	0	0 0 124	0 1	247 1093	1 2 3		
8:45	0	0 1	1	0	104	104	0 0	0	0 0 127	1 1	28 233 998		. 2 0	. 2 5
Total	11	0 13	24	4	1064 (1068	0 0	0	0 1179	5 11	84 2276	2073 ACCESS	2073 ACCESS	2073 ACCESS
Peak hour	5	0 7	12	1	539 (540	0 0	0	0 619	3 6	22 1174		2010 100200	2010/100200
Peak 15 min			4			148			D	1	81 328			
PHF			0.75			0.91		######	#	0.8	86 0.89			
			4											
Project :	TIA : PF	ROPOSED DE	/ELOPM	ENT ON	I ERF 2074, PL	ETTENBEI	RG BAY		Day & date :	30/8/	/2024			
Intersection :	MARIN	E WAY / ERF	2073				NO. 2		Time period:	15:0	0 - 18:00		N	
STADTING	1	2072 ACCES		1		/			MADINE					
TIME		Northbound	5		Woothound		- Southbour	d	Easth	ound	INTER-			PM PEAK HOOK
	Loft	Thru Right	Total	Loft	Thru Right	Total	off Thru Rid	t Total	Loft Thru	Dunu Diabt Total	J Total Hour	2024	2025	2030
15.00	Leit		TULAI	Leit	109	10121		1		า	50 167	_		
15:15	0	0 0	0	0	108	113	0 0	2	2 0 86	1	87 202			-
15:30	0	0 0	0	2	110	112	0 0	1	1 0 96	0	96 209			
15:45	0	0 0	0	2	99	101	0 0	2	2 0 78	0	78 181 759			
16:00	0	0 0	0	1	148) 149	0 0	1	1 0 107	0 1	07 257 849	┨	┃	┃
16:15	0	0 0	0	2	144	146	0 0	0	0 0 103	1 1	04 250 897			
16:30	0	0 0	0	1	202	203	0 0	0	0 0 109	0 1	09 312 1000	11 395 → 673 5	11 405 → 690 5	11 458 → 4 780 5
16:45	0	0 0	0	3	159) 162	0 0	2	2 0 77	1	78 242 1061	12 3 7 4	12 3 7 4	12 3 8 4
17:00	0	0 0	0	2	173) 175	0 0	0	0 0 111	1 1	12 287 1091	╢ ─────┐╹⋖┐ ♠ ┌▶╹ ┌───	┃ ──────」⁴ ┌ᆃ╹┌───	┃ '─── ` ' * ┐ ≜ ┌ >' ┌──
17:15	0	0 0	0	1	139	140	1 0	0	1 0 98	1	99 240 1081			
17:30	0	0 0	0	0	104	104	0 0	0	0 0 64	1	65 169 938	0 0 0	0 0 0	0 0 0
17:45	0	0 0	0	4	70) 74	2 0	0	2 0 55	1	56 132 828	1 2 3	1 2 3	1 2 3
Total	0	0 0	0	18	1569 0	1587	3 0	9 1	2 0 1040	9 10	49 2516			
Peak hour	0	0 0	0	7	673 (680	1 0	2	3 0 395	3 3	98 1081	2073 ACCESS	2073 ACCESS	2073 ACCESS
Peak 15 min	<u> </u>		0			203		:	2	1	12 312			
PHF	1		#DIV/0!			0.84		0.3	3	0.	89 0.87			

Project :	TIA : PF	ROPOSED DE	VELOPM	IENT ON	ERF 20)74, PLE	TTENB	ERG BAY	(0	Day & date	:	30/8	8/2024											
Intersection :	MARIN	E WAY / CHAL	LENGE	DRIVE					NO. 3		٦	Time period	d:	06:0	00 - 09:0	D						1				r -
STADTING	T	0		T	MADIN			CL			- 1	MA		MAX	1						A.M.					
TIME		Northbound			W/oo				Southby		-	11/-		und .	0	INTER-		2024				2025			2011	020
T IIVIL	Loft	Thru Dight	Total	Loft	Thru	Dight	Total	Loft	Thru E	Junu Jight T	otol I	oft Thr		iaht Tot	al Tota			2024				2025			2	.050
6.00					2	Ngrit	10141			1	1		8		8	11		0 0	7		0	0 7			0	0 7
6:15	0	0 0		0	17	0	17	7	0	0	7	0	10	0	10	13		75 0	113		77	0 116	٦		87	0 131
6:30	0			0	25	2	27	7 Q	0	1	10	2	31	0	33	43 70			113		"				°/	0 131
6:45	0			0	62	2	65	16	0	1	17	6	60	0	66 1	48 273		∣₄┘↓∣	→		•	┘↓└╻				, L, I
7:00	0			0	45	2	47	16	0	1	17	9	59	0	68 1	32 302	10 74	— _	Å <u>38</u> 6	10 76	∧ _`	· · · · +	39 6	10 86	^ ` `	4 44 6
7:15	0	0 0	0	0	138	4	142	9	0	29	38	21	151	0	172 3	52 702	02 11 552 → 465 5		11 56	. →		477 5	11 640	 →	539	
7:30	0	0 0	0 0	0	97	13	110	29	0	29	58	13	116	0	129 2	97 929	22 11 352 		12 0	, . 	, ,	— 0 4	12 0	_		
7:45	0	0 0	0 0	0	114	9	123	51	0	26	77	21	167	0	188 3	88 1169				*←	╕ᆥ┍┿╹			₹ ∦		
8:00	0	0 0	0 0	0	116	12	128	24	0	-9	15	19	118	0	137 2	80 1317	17									
8:15	0	0 0	0 0	0	69	17	86	26	0	9	35	6	82	0	88 2	09 1174	0 0 0			0	0 0			0	0 0	
8:30	0	0 0	0 0	0	100	6	106	21	0	8	29	7	108	0	115 2	50 1127		1 2	3		1	2 3	-		1	2 3
8:45	0	0 0	0 0	0	72	6	78	39	0	7	46	5	97	0	102 2	26 965										
Total	0	0 0	0 0	0	857	74	931	247	0	103	350	109 1	016	0 1	125 24	06		0				0			(D
Peak hour	0	0 0	0 0	0	465	38	503	113	0	75	188	74	552	0 0	626 13	17										
Peak 15 min			0				142				77				188 3	88										
PHF			#DIV/0!				0.89				0.61			0	0.83 0.	85										
Project : Intersection :	tia : Pf Marin	ROPOSED DE' E WAY / CHAL	VELOPM LENGE	IENT ON DRIVE	I ERF 20)74, PLE	TTENB	ERG BAY	(NO. 3		1	Day & date Time period	: 1:	30/8 15:0	8/2024 00 - 18:0	D		N				N			N	
STARTING		0			MARIN	IE WAY		CH	HALLENG	E DRIVE		MA	RINE V	WAY		INTER-		PM PEAK H	OUR		PN	I PEAK HOUR			PM PEA	K HOUR
TIME		Northbound			Wes	tbound			Southbo	ound		E	astbou	und	S	ECTION		2024	Ļ			2025			2	030
	Left	Thru Right	Total	Left	Thru	Right	Total	Left	Thru R	light To	otal L	_eft Thr	u Ri	ight Tot	al Tota	I Hour										
15:00	0	0 0	0 0	0	114	8	122	26	0	2	28	9	60	0	69 2	19		CHALLENGE	DRIVE		CHA	LLENGE DRIVE	-		CHALLEN	GE DRIVE
15:15	0	0 0	0 0	0	100	11	111	18	0	6	24	13	55	0	68 2	03		9 8	7		9	8 7	_		9	8 7
15:30	0	0 0	0 0	0	99	6	105	15	0	3	18	14	70	0	84 2	07		52 0	130		53	0 133			60	0 151
15:45	0	0 0	0 0	0	94	9	103	15	0	2	17	10	62	0	72 1	92 821										
16:00	0	0 0	0 0	0	135	11	146	29	0	11	40	18	88	0	106 2	92 894		♥ '	→,└──	I	▲	· * ->.			♥	′ ↦.∟
16:15	0	0 0	0 0	0	99	8	107	18	0	16	34	11	79	0	90 2	31 922	10 49		66 6	10 50		t	68 6	10 57		T 77 e
16:30	0	0 0	0 0	0	202	24	226	57	0	12	69	16	122	0	138 4	33 1148	11 346	-	← 625 5	11 35	; ->	+	- 641 5	11 401	-	
16:45	0	0 0	0 0	0	229	6	235	35	0	7	42	9	94	0	103 3	80 1336	12 0			12 0		╴╸╺		12 0		·▼───────────────────────────────────
17:00	0	0 0	0 0	0	125	9	134	22	0	10	32	13	92	0	105 2	71 1318			-			I T I F				
17:15	0	0 0		0	69	27	96	16	0	23	39	11	38	0	49 1	84 1268										
17:30	0			0	35	13	48	14	U	0 A	2U 12	5 19	47	0	02 1 40 1	20 955			<u> </u>			<u> </u>	J		0	<u> </u>
Tatal	0			0	43	13	1400	070	0	102	275	10	22	0	40 I	00 000		1 2	3		1	2 3			1 3	2 3
Peak bour	0			0	1344	145	1489	2/2	0	103	3/5	147	346	0 9	305 12	3∠ 68		0				0				1
Peak 15 min	0		0	- 0	025	00	235	130	0	JZ	69	49	540		138 4	33		0				0			(5
							200				50															

ANNEXURE C Historical Traffic Data – MR00382

7/24/24, 12:18 PM

F

Station Data

	Tra	ffic Coun	ts		Statio	on Data		Sketch (Cl	Sketch (Click on L	Sketch (Click on Leg to	Sketch (Click on Leg to Displa	Sketch (Click on Leg to Display Da	Sketch (Click on Leg to Display Data)					
Time	Light	Heavy	Taxis	Buses	Station No	2368A						না	ରା	ରା	୍ଲା	PI PI		
00-01h00					Road No	MR00382				385	3382 3382	382 3ay	382 3ay	3ay	3382			
01-02h00					Km Distance	2.12				Roc	ROC Brig F	ROC ROC	ROC ROC	ROO ROO				
02-03h00										W	(MI	upe <mark>(</mark> M	I M I M	(Minded in the second sec				
03-04h00					Count Date	24/08/2022	2	2	2	2 4	2 ette		ette	ette		2 < d d d d d d d d d d d d d d d d d d		
04-05h00	5	1	1	0	Hours Counted	18				e E	ь Ге	Leg Leg	Leg Pe	Leg Leg	B d	Growth F		
05-06h00	19	1	3	0	Day Counted	Wednesday												
Sub-Totals	24	2	4	0	Counted by	c					ary	ary	ary	ary				
06-07h00	143	12	5	1	Expansion Factor	0.94				382	385 387	385 pur	385 387	85 pur				
07-08h00	495	16	24	7	Charabum	CA				300	Bou	Bou	800 B01	B000	≥ Bol 30	ରୁ <u>ଜ</u> ି <u>< 2022/0</u>		
08-09h00	403	26	17	2	Stratum					(MF	bal	pal (MF	bal (MF	bal (MF	bal (MF	bal (MF		
09-10h00	295	36	3	0	Peak Hour Ratio	11.80				U								
10-11h00	300	29	1	0	THE AADT	4600				Leg	Mu	Mu	Mu	Mu Leo				
11-12h00	305	27	0	0	Iotal AAD I	4692					· · · · · · · · · · · · · · · · · · ·			· ·		' Statio		
12-13h00	327	29	4	0			-											
13-14h00	321	26	5	5	Station Coun	ts Chart	\checkmark	🗹 Light	🗹 Light 🗹 Heavy	🗹 Light 🗹 Heavy 🛛 🗹 Taxis	🗹 Light 🗹 Heavy 🔽 Taxis 🗹 B	✓ Light ✓ Heavy ✓ Taxis ✓ Buses	🗹 Light 🗹 Heavy 🔽 Taxis 🗹 Buses 🗹	🗹 Light 🗹 Heavy 🗹 Taxis 🗹 Buses 🗹 Tota	🗹 Light 🗹 Heavy 🔽 Taxis 🗹 Buses 🗹 Total Stratu	✓ Light ✓ Heavy ✓ Taxis ✓ Buses ✓ Total Stratum Pattern		
14-15h00	369	42	4	4	600				<u></u>									
15-16h00	402	28	5	1	540										Ligt	Light		
16-17h00	433	24	9	1	190										e Hea	Heavy		
17-18h00	378	16	6	0	480										Bus Tota	Buses Total		
Sub-Totals	4171	311	83	21	420		-											
18-19h00	183	3	5	0	360		1	<u> </u>										
19-20h00	85	1	2	0	300		-				╞┶╾┝╾┥╾╴┼╌╌┼╌╌┝╶╌╶┝╶╴╴┪╴							
20-21h00	60	2	0	0	240													
21-22h00	33	1	0	0	180	_ _ _												
22-23h00					120													
23-24h00					60													
Sub-Totals	361	7	7	0	60+		1											
Totals	4556	320	94	21	0 8 8	8 8 8	00	8 8	8 8 8 8 8 8	8 8 8 8 8 8 8 8								
Station AAD	T's				05 h 06 h	4 70 1 80 1 91	10 h	10 h 11 h	10h 11h 12h 13h 13h 14h 14h	10h 11h 12h 12h 14h 15h 15h 15h 17h	10h 11h 12h 13h 13h 13h 13h 13h 13h 13h 13h 13h 13	10h 11h 12h 13h 13h 13h 13h 13h 13h 13h 13h 13h 13	10h 11h 12h 13h 13h 13h 13h 13h 13h 13h 13h 12h 12h 12h 12h 12h 12h 12h 12h 12h 12	10h 11h 12h 13h 13h 13h 13h 13h 13h 13h 13h 13h 13	10 11 11 12 13 13 14 14 14 14 17 17 17 17 17 17 17 17 17 17 17 17 17	10 11 11 11 11 11 11 11 11 11 11 11 11 1		
[Light	Heavy	Taxis	Buses					Count Hour	Count Hour	Count Hour	Count Hour	Count Hour	Count Hour	Count Hour	Count Hour		
Ē	4283	301	88	20														
	7205	501																

	Western Cape Government
--	----------------------------

Intersection Diagram

Node- 2368 L	.eg- C	Growth	Rate: 2	.43 (C)		
Date Ligh	t Heavy	Taxis	Buses	Total	Km per Leg	
24/08/22 4283	3 301	88	20	4692	Node Leg Road No Km	
08/11/18 4345	5 320	112	21	4798	2368 A MR00382 2.12	
17/11/15 3380	540	124	24	4068	2368 C MR00382 2.12	
17/03/10 2525	5 251	76	6	2858		
26/10/04 2807	7 494	162	23	3486		
02/10/01 1979	9 264	81	6	2330		
	4 230	66	14	1944		
		~				
	038	da				
	ARO					
		۵ ج				
	Le					
		2				
	32)	>				
	0038	ם ם				
	ARC	ה פ				
	∠) qui					
	eg /					
		L				
Node- 2368	ea-A C	arowth	Rate: 2	.43 (C)		
Date	t Heavy	Taxis	Buses	Total		
24/08/22 4283	3 301	88	20	4692		
08/11/18 4345	5 320	112	21	4798		
17/11/15 3380	540	124	24	4068		
17/03/10 252	5 251	76	6	2858		
26/10/04 2807	7 494	162	23	3486		
02/10/01 1979	9 264	81	6	2330		
18/07/00 1634	4 230	66	14	1944		
					Print Exit	

https://rnis.westerncape.gov.za/rnis/rnisx_station_data_rep.intersection_diagram?p_node=2368a

7/24/24, 12:16 PM

ANNEXURE D N2 Station 18051 Goose Valley

Traffic Highlights of Site: Goose Valley (18051)	
Site No	18051
Site Name	Goose Valley
Site Description	Between Plettenberg & R340
Road Description	Route : N002 Section : 08E Distance : 62.89 km
GPS Position	Latitude: -34.027432 Longitude: 23.378207
Number of Lanes	2
Station Type	Permanent
Requested Data Period	01 Jan 2019 - 31 Dec 2019
First and Last Data Dates	01 Jan 2019 - 31 Oct 2019
Data Available for Requested Period as Percentage	83%
Last Full Day Count for ADT and ADTT	31 Oct 2019
Number of Full Days in Requested Period	303

Higl	nlights per Stream	Str 1: To Keurboomstran d	Str 2: To Plettenberg	Value
1.1	Total Number of Vehicles	1,652,680	1,674,851	3,327,531
1.2	Average Daily Traffic (ADT)	5,438	5,510	10,948
1.3	Average Daily Truck Traffic (ADTT)	495	454	949
1.4	Percentage of Trucks	9.1 %	8.2 %	8.7 %
1.5	Truck Split % (Short : Medium : Long)	38 : 15 : 47	40 : 17 : 43	39 : 16 : 45
1.6	Percentage of Night Traffic [20h00 - 6h00)	8.6 %	7.9 %	8.3 %
2.1	Speed Limit			100
2.2	Average Speed (km/hr)	86.9	85.1	86.0
2.3	Average Speed - Light Vehicles (km/hr	87.7	86.3	87.0
2.4	Average Speed - Heavy Vehicles (km/hr)	84.0	80.7	82.4
2.5	Average Night Speed (km/hr)	92.0	88.2	90.1
2.6	15th Centile Speed (km/hr)	71.5	70.6	71.1
2.7	85th Centile Speed (km/hr)	95.6	95.7	95.7
2.8	Percentage of Vehicles in Excess of Speed Limit	51.8 %	51.5 %	51.6 %
3.1	Percentage Vehicles in Flows Over 600 (vehs/hr)	5.4 %	4.0 %	78.20%
3.2	Percentage of Vehicles less than 2s behind vehicle ahead	0 %	0 %	0 %

SANRAL Yearbook

4.1	Total Number of Heavy Vehicles	150,594	138,072	288,666
4.2	Estimated Average Number of axles per Truck	4.8	4.7	4.8
4.3	Estimated Truck Mass (Ton/Truck)	27.6	26.8	27.2
4.4	Estimated Average E80 / Truck	2.3	2.2	2.25
4.5	Estimated Daily E80 on the Road			2,054.0
4.6	Estimated Daily E80 in the East Direction			3,215.0
4.7	Estimated Daily E80 in the West Direction			2,948.0
4.8	Estimated Daily E80 in the Worst East Lane			3,215.0
4.9	Estimated Daily E80 in the Worst West Lane			2,948.0
5.1	ASSUMPTION on Axles/Truck (Short:Medium:Long)			(2.0 : 5.0 : 7.0)
5.2	ASSUMPTION on Mass/Truck (Short:Medium:Long)			(10.9 : 31.5 : 39.8)
5.3	ASSUMPTION on E80s/Truck (Short:Medium:Long)			(0.5 : 2.1 : 3.9)

Traf	fic Volumes	Date and Time	Value
6.1	Highest Volume on the Road (vehs/hr)	03 Jan 2019 (11:00 - 12:00)	1,997
6.2	Highest Volume in the East (vehs/hr)	02 Jan 2019 (12:00 - 13:00)	1,067
6.3	Highest Volume in the West (vehs/hr)	03 Jan 2019 (11:00 - 12:00)	1,006
6.4	Highest Volume in a Lane (vehs/hr)	02 Jan 2019 (12:00 - 13:00)	1,067
6.5	15th Highest Volume on the Road (vehs/hr)	05 Jan 2019 (12:00 - 13:00)	1,704
6.6	15th Highest Volume in the East Direction (vehs/hr)	05 Jan 2019 (13:00 - 14:00)	829
6.7	15th Highest Volume in the West Direction (vehs/hr)	02 Jan 2019 (15:00 - 16:00)	844
6.8	30th Highest Volume on the Road (vehs/hr)	01 Jan 2019 (13:00 - 14:00)	1,473
6.9	30th Highest Volume in the East Direction (vehs/hr)	08 Jan 2019 (12:00 - 13:00)	752
6.10	30th Highest Volume in the West Direction (vehs/hr)	02 Jan 2019 (12:00 - 13:00)	712

Station Typical Flow Graphs

SANRAL Yearbook

0

SANRAL

SANRAL Yearbook

0

20

40

60

80

Generated by The South African National Roads Agency SOC LTD For queries, contact: Michelle van der Walt (012) 844 8029 vdwaltm@nra.co.za

100

Speed

120

140

-20 -10

- 0

200

180

160

ANNEXURE E SIDRA OUTPUT SHEETS 2025 Before Development

MOVEMENT SUMMARY

Site: 101 [[01] 01 am nd (Site Folder: 2025 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Stop (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Dem Fl	nand Iows H\/ 1	Ar Fl [Total	rival lows HV 1	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh	Back Of eue Dist 1	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
South	: Wha	lesong Ac	cess												
1	L2	All MCs	2	0.0	2	0.0	0.061	10.2	LOS B	0.2	1.3	0.84	1.00	0.84	18.6
2	T1	All MCs	3	0.0	3	0.0	0.061	33.4	LOS D	0.2	1.3	0.84	1.00	0.84	17.5
3	R2	All MCs	3	0.0	3	0.0	0.061	40.9	LOS E	0.2	1.3	0.84	1.00	0.84	14.4
Appro	ach		8	0.0	8	0.0	0.061	30.4	LOS D	0.2	1.3	0.84	1.00	0.84	16.7
East:	Marin	e Way													
4	L2	All MCs	3	0.0	3	0.0	0.298	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	48.1
5	T1	All MCs	577	0.0	577	0.0	0.298	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
6	R2	All MCs	7	0.0	7	0.0	0.008	7.5	LOS A	0.0	0.2	0.46	0.61	0.46	36.3
Appro	ach		587	0.0	587	0.0	0.298	0.1	NA	0.0	0.2	0.01	0.01	0.01	59.2
North:	Ultra	City Acce	ess												
7	L2	All MCs	72	0.0	72	0.0	0.103	10.5	LOS B	0.4	2.5	0.48	0.93	0.48	33.7
8	T1	All MCs	1	0.0	1	0.0	0.103	36.4	LOS E	0.4	2.5	0.48	0.93	0.48	30.8
9	R2	All MCs	80	0.0	80	0.0	0.759	75.8	LOS F	3.5	24.6	0.96	1.20	1.80	12.5
Appro	ach		153	0.0	153	0.0	0.759	44.9	LOS E	3.5	24.6	0.73	1.07	1.17	17.0
West:	Marir	e Way													
10	L2	All MCs	60	0.0	60	0.0	0.032	5.5	LOS A	0.0	0.0	0.00	0.58	0.00	42.7
11	T1	All MCs	398	0.0	398	0.0	0.204	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
12	R2	All MCs	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.53	0.57	0.53	34.4
Appro	ach		459	0.0	459	0.0	0.204	0.8	NA	0.0	0.0	0.00	0.08	0.00	56.4
All Ve	hicles		1207	0.0	1207	0.0	0.759	6.2	NA	3.5	24.6	0.10	0.18	0.16	43.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:05:13 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

MOVEMENT SUMMARY

Site: 101 [[01] 01 pm nd (Site Folder: 2025 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total	nand lows HV]	Ar Fl [Total]	rival lows HV] %	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh.	Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	: Wha	lesong Ad	ccess	70	ven/m	70	v/C	360		Ven	111	_	_		NIII/11
1	L2	All MCs	4	0.0	4	0.0	0.138	12.3	LOS B	0.4	2.8	0.90	1.00	0.90	15.1
2	T1	All MCs	3	0.0	3	0.0	0.138	50.3	LOS F	0.4	2.8	0.90	1.00	0.90	14.1
3	R2	All MCs	6	0.0	6	0.0	0.138	55.4	LOS F	0.4	2.8	0.90	1.00	0.90	11.4
Appro	ach		14	0.0	14	0.0	0.138	41.0	LOS E	0.4	2.8	0.90	1.00	0.90	13.2
East:	Marin	e Way													
4	L2	All MCs	5	0.0	5	0.0	0.372	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	48.1
5	T1	All MCs	720	0.0	720	0.0	0.372	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
6	R2	All MCs	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.47	0.57	0.47	36.2
Approach			726	0.0	726	0.0	0.372	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.5
North:	Ultra	City Acce	ess												
7	L2	All MCs	25	0.0	25	0.0	0.045	10.3	LOS B	0.2	1.1	0.51	0.89	0.51	32.6
8	T1	All MCs	1	0.0	1	0.0	0.045	49.3	LOS E	0.2	1.1	0.51	0.89	0.51	29.7
9	R2	All MCs	141	0.0	141	0.0	2.110	577.7	LOS F	26.5	185.2	1.00	2.02	5.42	2.0
Appro	ach		167	0.0	167	0.0	2.110	488.8	LOS F	26.5	185.2	0.92	1.84	4.65	2.3
West: Marine Way															
10	L2	All MCs	89	0.0	89	0.0	0.048	5.5	LOS A	0.0	0.0	0.00	0.58	0.00	42.7
11	T1	All MCs	398	0.0	398	0.0	0.204	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
12	R2	All MCs	1	0.0	1	0.0	0.001	8.6	LOS A	0.0	0.0	0.58	0.61	0.58	33.0
Appro	ach		488	0.0	488	0.0	0.204	1.0	NA	0.0	0.0	0.00	0.11	0.00	55.1
All Vehicles			1396	0.0	1396	0.0	2.110	59.4	NA	26.5	185.2	0.12	0.27	0.57	13.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:08:58 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9
V Site: 101v [[01] 01 am nd - Circle (Site Folder: 2025 Before Development)]

Metwork: N101 [2025 Before AM (Network Folder: Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Roundabout

Vehic	hicle Movement Performance														
Mov	Turn	Mov	Dem	hand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	e Prop.	Eff.	Aver.	Aver.
שו		Class	Fi [Total	HV 1	اح Total]	HV 1	Sain	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
South	: Wha	lesong A	ccess												
1	L2	All MCs	2	0.0	2	0.0	0.012	7.4	LOS A	0.0	0.2	0.70	0.64	0.70	33.9
2	T1	All MCs	3	0.0	3	0.0	0.012	7.8	LOS A	0.0	0.2	0.70	0.64	0.70	33.2
3	R2	All MCs	3	0.0	3	0.0	0.012	10.9	LOS B	0.0	0.2	0.70	0.64	0.70	19.7
Appro	ach		8	0.0	8	0.0	0.012	8.9	LOS A	0.0	0.2	0.70	0.64	0.70	30.1
East:	Marin	e Way													
4	L2	All MCs	3	0.0	3	0.0	0.004	5.6	LOS A	0.0	0.1	0.30	0.50	0.30	32.2
5	T1	All MCs	577	0.0	577	0.0	0.390	5.2	LOS A	1.4	9.5	0.35	0.46	0.35	40.5
6	R2	All MCs	7	0.0	7	0.0	0.390	8.5	LOS A	1.4	9.5	0.35	0.46	0.35	38.1
Appro	ach		587	0.0	587	0.0	0.390	5.3	LOS A	1.4	9.5	0.35	0.46	0.35	40.5
North:	Ultra	City Acc	ess												
7	L2	All MCs	72	0.0	72	0.0	0.075	7.2	LOS A	0.2	1.2	0.55	0.62	0.55	34.2
8	T1	All MCs	1	0.0	1	0.0	0.075	6.8	LOS A	0.2	1.2	0.53	0.66	0.53	32.5
9	R2	All MCs	80	0.0	80	0.0	0.075	10.0	LOS B	0.2	1.2	0.53	0.66	0.53	37.2
Appro	ach		153	0.0	153	0.0	0.075	8.7	LOS A	0.2	1.2	0.54	0.64	0.54	36.3
West:	Marir	ne Way													
10	L2	All MCs	60	0.0	60	0.0	0.056	5.0	LOS A	0.1	0.9	0.11	0.53	0.11	43.0
11	T1	All MCs	398	0.0	398	0.0	0.234	4.8	LOS A	0.7	4.7	0.10	0.45	0.10	41.3
12	R2	All MCs	1	0.0	1	0.0	0.234	8.0	LOS A	0.7	4.7	0.10	0.45	0.10	39.0
Appro	ach		459	0.0	459	0.0	0.234	4.8	LOS A	0.7	4.7	0.10	0.46	0.10	41.6
All Ve	hicles		1207	0.0	1207	0.0	0.390	5.6	LOS A	1.4	9.5	0.28	0.48	0.28	40.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:47:48 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

Site: 101v [[01] 01 pm nd - Circle (Site Folder: 2025 Before Development)]

Network: N101 [2025 Before PM (Network Folder: Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Roundabout

Vehic	le M	ovemen	t Perfo	orma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
ט ו		Class	Fi [Total	IOWS HV 1	FI [Total	lows HV 1	Sath	Delay	Service	[Veh	Dist 1	Que	Stop Rate	NO. OT Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Wha	lesong A	ccess												
1	L2	All MCs	4	0.0	4	0.0	0.026	9.8	LOS A	0.1	0.5	0.81	0.72	0.81	30.7
2	T1	All MCs	3	0.0	3	0.0	0.026	10.2	LOS B	0.1	0.5	0.81	0.72	0.81	29.9
3	R2	All MCs	6	0.0	6	0.0	0.026	13.3	LOS B	0.1	0.5	0.81	0.72	0.81	16.4
Appro	ach		14	0.0	14	0.0	0.026	11.5	LOS B	0.1	0.5	0.81	0.72	0.81	25.8
East: I	Marin	e Way													
4	L2	All MCs	5	0.0	5	0.0	0.006	6.1	LOS A	0.0	0.1	0.39	0.52	0.39	31.6
5	T1	All MCs	720	0.0	720	0.0	0.520	5.8	LOS A	2.0	14.2	0.53	0.50	0.53	39.2
6	R2	All MCs	1	0.0	1	0.0	0.520	9.1	LOS A	2.0	14.2	0.53	0.50	0.53	36.8
Appro	ach		726	0.0	726	0.0	0.520	5.8	LOS A	2.0	14.2	0.53	0.50	0.53	39.1
North:	Ultra	City Acce	ess												
7	L2	All MCs	25	0.0	25	0.0	0.039	8.7	LOS A	0.1	0.6	0.58	0.65	0.58	31.5
8	T1	All MCs	1	0.0	1	0.0	0.131	6.9	LOS A	0.3	2.2	0.55	0.67	0.55	32.3
9	R2	All MCs	141	0.0	141	0.0	0.131	10.2	LOS B	0.3	2.2	0.55	0.67	0.55	37.1
Appro	ach		167	0.0	167	0.0	0.131	9.9	LOS A	0.3	2.2	0.56	0.66	0.56	36.6
West:	Marir	ne Way													
10	L2	All MCs	89	0.0	89	0.0	0.080	4.9	LOS A	0.2	1.4	0.10	0.53	0.10	43.0
11	T1	All MCs	398	0.0	398	0.0	0.232	4.8	LOS A	0.8	5.3	0.10	0.45	0.10	41.3
12	R2	All MCs	1	0.0	1	0.0	0.232	8.0	LOS A	0.8	5.3	0.10	0.45	0.10	39.1
Appro	ach		488	0.0	488	0.0	0.232	4.8	LOS A	0.8	5.3	0.10	0.47	0.10	41.8
All Vel	nicles		1396	0.0	1396	0.0	0.520	6.0	LOS A	2.0	14.2	0.39	0.51	0.39	39.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:45:57 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

Site: 101 [[01] 02 am nd (Site Folder: 2025 Before Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 Before AM (Network Folder: Before Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	e hicle Movement Performance ov Turn Mov Demand Arrival Deg. Aver. Level of Aver. Back Of Queue P <u>rop. Eff. Aver. Aver.</u>														
Mov ID	Turn	Mov Class	Derr F [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h	
South	: Erf 2	2073 Acce	ess													
1	L2	All MCs	5	0.0	5	0.0	0.041	9.3	LOS A	0.0	0.3	0.72	0.99	0.72	12.6	
3	R2	All MCs	7	0.0	7	0.0	0.041	20.1	LOS C	0.0	0.3	0.72	0.99	0.72	12.6	
Appro	ach		13	0.0	13	0.0	0.041	15.6	LOS C	0.0	0.3	0.72	0.99	0.72	12.6	
East: I	Marin	e Way														
4	L2	All MCs	1	0.0	1	0.0	0.297	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	50.6	
5	T1	All MCs	581	0.0	581	0.0	0.297	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.8	
Appro	ach		582	0.0	582	0.0	0.297	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.7	
West:	Marir	ne Way														
11	T1	All MCs	667	0.0	667	0.0	0.344	0.0	LOS A	0.0	0.1	0.01	0.01	0.01	59.4	
12	R2	All MCs	3	0.0	3	0.0	0.344	6.4	LOS A	0.0	0.1	0.01	0.01	0.01	46.7	
Appro	ach		671	0.0	671	0.0	0.344	0.0	NA	0.0	0.1	0.01	0.01	0.01	59.3	
All Vel	hicles		1265	0.0	1265	0.0	0.344	0.2	NA	0.0	0.3	0.01	0.01	0.01	58.5	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:47:48 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

Site: 101 [[01] 02 pm nd (Site Folder: 2025 Before Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 Before PM (Network Folder: Before Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	ehicle Movement Performance lov Turn Mov Demand Arrival Deg. Aver. Level of Aver. Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	Derr F [Total veb/b	nand lows HV] %	Ar Fl [Total veb/b	rival lows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	: Erf 2	2073 Acce	ess	/0	Voli/II	70	110	000		Volt					
1	L2	All MCs	1	0.0	1	0.0	0.006	10.7	LOS B	0.0	0.1	0.72	0.88	0.72	13.7
3	R2	All MCs	1	0.0	1	0.0	0.006	17.7	LOS C	0.0	0.1	0.72	0.88	0.72	13.7
Appro	ach		2	0.0	2	0.0	0.006	14.2	LOS B	0.0	0.1	0.72	0.88	0.72	13.7
East:	Marin	e Way													
4	L2	All MCs	7	0.0	7	0.0	0.376	5.6	LOS A	0.0	0.0	0.00	0.01	0.00	50.4
5	T1	All MCs	726	0.0	726	0.0	0.376	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.4
Appro	ach		734	0.0	734	0.0	0.376	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.3
West:	Marir	ne Way													
11	T1	All MCs	426	0.0	426	0.0	0.223	0.0	LOS A	0.0	0.1	0.01	0.02	0.01	59.1
12	R2	All MCs	3	0.0	3	0.0	0.223	8.1	LOS A	0.0	0.1	0.01	0.02	0.01	46.5
Appro	ach		429	0.0	429	0.0	0.223	0.1	NA	0.0	0.1	0.01	0.02	0.01	58.9
All Ve	hicles		1165	0.0	1165	0.0	0.376	0.1	NA	0.0	0.1	0.01	0.01	0.01	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:45:57 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[01] 03 am nd (Site Folder: 2025 Before Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 Before AM (Network Folder: Before Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Roundabout

Vehic	cle M	ovemen	t Perfo	orma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Marin	e Way													
5	T1	All MCs	502	0.0	502	0.0	0.390	4.5	LOS A	1.2	8.7	0.33	0.43	0.33	50.2
6	R2	All MCs	41	0.0	41	0.0	0.390	9.1	LOS A	1.2	8.7	0.33	0.43	0.33	52.7
Appro	ach		543	0.0	543	0.0	0.390	4.8	LOS A	1.2	8.7	0.33	0.43	0.33	50.6
North:	Chal	lenge Dri	ve												
7	L2	All MCs	122	0.0	122	0.0	0.238	7.5	LOS A	0.6	4.0	0.67	0.69	0.67	50.8
9	R2	All MCs	81	0.0	81	0.0	0.238	12.3	LOS B	0.6	4.0	0.67	0.69	0.67	46.2
Appro	ach		203	0.0	203	0.0	0.238	9.4	LOS A	0.6	4.0	0.67	0.69	0.67	49.6
West:	Marir	ne Way													
10	L2	All MCs	80	0.0	80	0.0	0.442	4.1	LOS A	1.4	9.9	0.22	0.40	0.22	51.3
11	T1	All MCs	596	0.0	596	0.0	0.442	4.3	LOS A	1.4	9.9	0.22	0.40	0.22	51.8
Appro	ach		676	0.0	676	0.0	0.442	4.2	LOS A	1.4	9.9	0.22	0.40	0.22	51.7
All Ve	hicles	;	1422	0.0	1422	0.0	0.442	5.2	LOS A	1.4	9.9	0.33	0.45	0.33	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:47:48 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[01] 03 pm nd (Site Folder: 2025 Before Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 Before PM (Network Folder: Before Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Base Year Roundabout

Vehic	cle M	ovemen	t Perfo	orma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Marin	e Way													
5	T1	All MCs	675	0.0	675	0.0	0.501	4.4	LOS A	1.8	12.8	0.30	0.42	0.30	50.4
6	R2	All MCs	72	0.0	72	0.0	0.501	9.0	LOS A	1.8	12.8	0.30	0.42	0.30	52.7
Appro	ach		746	0.0	746	0.0	0.501	4.8	LOS A	1.8	12.8	0.30	0.42	0.30	50.8
North	: Chal	lenge Dri	ve												
7	L2	All MCs	140	0.0	140	0.0	0.193	5.9	LOS A	0.4	3.1	0.53	0.62	0.53	52.3
9	R2	All MCs	56	0.0	56	0.0	0.193	10.7	LOS B	0.4	3.1	0.53	0.62	0.53	48.6
Appro	ach		196	0.0	196	0.0	0.193	7.3	LOS A	0.4	3.1	0.53	0.62	0.53	51.6
West:	Marir	ne Way													
10	L2	All MCs	53	0.0	53	0.0	0.302	4.2	LOS A	0.8	5.5	0.26	0.41	0.26	51.1
11	T1	All MCs	374	0.0	374	0.0	0.302	4.4	LOS A	0.8	5.5	0.26	0.41	0.26	51.6
Appro	ach		426	0.0	426	0.0	0.302	4.4	LOS A	0.8	5.5	0.26	0.41	0.26	51.5
All Ve	hicles		1368	0.0	1368	0.0	0.501	5.0	LOS A	1.8	12.8	0.32	0.45	0.32	51.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 3:45:57 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

ANNEXURE F SIDRA OUTPUT SHEETS 2025 After Development

V Site: 101v [[02] 01 am ad - Circle (Site Folder: 2025 After Development)]

Network: N101 [2025 After AM (Network Folder: After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 After Development Site Category: Proposed Design 1 Roundabout

Vehic	ehicle Movement Performance ov Turn Mov Demand Arrival Deg Aver Level of Aver Back Of Queue Prop Eff Aver Aver														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
U		Class	⊢ [Total]	IOWS HV 1	ا۲ Total آ	IOWS HV 1	Sath	Delay	Service	[Veh.	Dist 1	Que	Stop Rate	No. of Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			- ,	km/h
South:	Wha	lesong A	ccess												
1	L2	All MCs	2	0.0	2	0.0	0.014	8.5	LOS A	0.0	0.2	0.75	0.66	0.75	32.5
2	T1	All MCs	3	0.0	3	0.0	0.014	8.9	LOS A	0.0	0.2	0.75	0.66	0.75	31.8
3	R2	All MCs	3	0.0	3	0.0	0.014	12.0	LOS B	0.0	0.2	0.75	0.66	0.75	18.2
Appro	ach		8	0.0	8	0.0	0.014	9.9	LOS A	0.0	0.2	0.75	0.66	0.75	28.6
East: I	Marin	e Way													
4	L2	All MCs	3	0.0	3	0.0	0.004	5.6	LOS A	0.0	0.1	0.30	0.50	0.30	41.6
5	T1	All MCs	679	0.0	679	0.0	0.457	5.3	LOS A	1.8	12.4	0.39	0.46	0.39	45.4
6	R2	All MCs	7	0.0	7	0.0	0.457	8.6	LOS A	1.8	12.4	0.39	0.46	0.39	43.6
Appro	ach		689	0.0	689	0.0	0.457	5.3	LOS A	1.8	12.4	0.39	0.46	0.39	45.4
North:	Ultra	City Acce	ess												
7	L2	All MCs	72	0.0	72	0.0	0.093	9.2	LOS A	0.2	1.5	0.68	0.69	0.68	30.7
8	T1	All MCs	1	0.0	1	0.0	0.089	8.4	LOS A	0.2	1.5	0.67	0.71	0.67	30.6
9	R2	All MCs	80	0.0	80	0.0	0.089	11.6	LOS B	0.2	1.5	0.67	0.71	0.67	35.6
Appro	ach		153	0.0	153	0.0	0.093	10.5	LOS B	0.2	1.5	0.67	0.70	0.67	34.0
West:	Marir	ne Way													
10	L2	All MCs	60	0.0	60	0.0	0.056	5.0	LOS A	0.1	0.9	0.11	0.53	0.11	43.0
11	T1	All MCs	629	0.0	629	0.0	0.365	4.8	LOS A	1.2	8.6	0.12	0.45	0.12	41.1
12	R2	All MCs	1	0.0	1	0.0	0.365	8.0	LOS A	1.2	8.6	0.12	0.45	0.12	38.9
Appro	ach		691	0.0	691	0.0	0.365	4.8	LOS A	1.2	8.6	0.12	0.45	0.12	41.3
All Vel	nicles		1541	0.0	1541	0.0	0.457	5.6	LOS A	1.8	12.4	0.30	0.48	0.30	42.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:00:52 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

Site: 101v [[02] 01 pm ad - Circle (Site Folder: 2025 After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 After PM (Network Folder: After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 After Development Site Category: Proposed Design 1 Roundabout

Vehic	le M	ovemen	t Perfo	orma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Bacl	< Of Queue	e Prop.	Eff.	Aver.	Aver.
ID		Class	H [Total	lows HV/1	Fl [Total	OWS H\/ 1	Satn	Delay	Service	[\/eh	Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	<u>%</u>	veh/h	<u>%</u>	v/c	sec		veh	m		rtato	0,0100	km/h
South	: Wha	lesong A	ccess												
1	L2	All MCs	4	0.0	4	0.0	0.028	10.5	LOS B	0.1	0.5	0.84	0.73	0.84	30.0
2	T1	All MCs	3	0.0	3	0.0	0.028	10.8	LOS B	0.1	0.5	0.84	0.73	0.84	29.3
3	R2	All MCs	6	0.0	6	0.0	0.028	13.9	LOS B	0.1	0.5	0.84	0.73	0.84	15.8
Appro	ach		14	0.0	14	0.0	0.028	12.1	LOS B	0.1	0.5	0.84	0.73	0.84	25.1
East:	Marin	e Way													
4	L2	All MCs	5	0.0	5	0.0	0.006	6.1	LOS A	0.0	0.1	0.40	0.52	0.40	41.1
5	T1	All MCs	762	0.0	762	0.0	0.550	5.9	LOS A	2.3	15.8	0.56	0.50	0.56	44.4
6	R2	All MCs	1	0.0	1	0.0	0.550	9.2	LOS A	2.3	15.8	0.56	0.50	0.56	42.6
Appro	ach		768	0.0	768	0.0	0.550	5.9	LOS A	2.3	15.8	0.56	0.50	0.56	44.3
North:	Ultra	City Acce	ess												
7	L2	All MCs	25	0.0	25	0.0	0.042	9.6	LOS A	0.1	0.6	0.63	0.69	0.63	29.9
8	T1	All MCs	1	0.0	1	0.0	0.141	7.5	LOS A	0.3	2.4	0.61	0.69	0.61	31.5
9	R2	All MCs	141	0.0	141	0.0	0.141	10.8	LOS B	0.3	2.4	0.61	0.69	0.61	36.4
Appro	ach		167	0.0	167	0.0	0.141	10.6	LOS B	0.3	2.4	0.62	0.69	0.62	35.8
West:	Marir	ne Way													
10	L2	All MCs	89	0.0	89	0.0	0.080	4.9	LOS A	0.2	1.4	0.10	0.53	0.10	43.0
11	T1	All MCs	496	0.0	496	0.0	0.287	4.8	LOS A	1.0	7.0	0.10	0.45	0.10	41.2
12	R2	All MCs	1	0.0	1	0.0	0.287	8.0	LOS A	1.0	7.0	0.10	0.45	0.10	39.0
Appro	ach		586	0.0	586	0.0	0.287	4.8	LOS A	1.0	7.0	0.10	0.46	0.10	41.6
All Ve	hicles		1536	0.0	1536	0.0	0.550	6.0	LOS A	2.3	15.8	0.39	0.51	0.39	42.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:01:21 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[02] 03 am ad (Site Folder: 2025 After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2025 After AM (Network Folder: After Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 After Development Site Category: Proposed Design 1 Roundabout

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	hand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
UI		Class	FI Total	IOWS HV/1	Fl [Total	lows HV/ 1	Satn	Delay	Service	[\/eh	Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	<u>%</u>	v/c	sec		veh	m		- Tato		km/h
South	Erf 2	2074 Acce	ss												
1	L2	All MCs	107	0.0	107	0.0	0.354	6.3	LOS A	0.9	6.6	0.75	0.73	0.75	20.0
2	T1	All MCs	7	0.0	7	0.0	0.354	6.7	LOS A	0.9	6.6	0.75	0.73	0.75	46.2
3	R2	All MCs	173	0.0	173	0.0	0.354	10.9	LOS B	0.9	6.6	0.75	0.73	0.75	45.0
Appro	ach		287	0.0	287	0.0	0.354	9.1	LOS A	0.9	6.6	0.75	0.73	0.75	41.3
East: I	Marin	e Way													
4	L2	All MCs	58	0.0	58	0.0	0.452	4.6	LOS A	1.5	10.3	0.42	0.46	0.42	48.6
5	T1	All MCs	501	0.0	501	0.0	0.452	4.8	LOS A	1.5	10.3	0.42	0.46	0.42	49.7
6	R2	All MCs	41	0.0	41	0.0	0.452	9.4	LOS A	1.5	10.3	0.42	0.46	0.42	52.3
Appro	ach		600	0.0	600	0.0	0.452	5.1	LOS A	1.5	10.3	0.42	0.46	0.42	49.9
North:	Chal	lenge Driv	ve												
7	L2	All MCs	122	0.0	122	0.0	0.310	9.5	LOS A	0.9	6.0	0.84	0.76	0.84	49.5
8	T1	All MCs	1	0.0	1	0.0	0.310	9.7	LOS A	0.9	6.0	0.84	0.76	0.84	43.9
9	R2	All MCs	81	0.0	81	0.0	0.310	14.3	LOS B	0.9	6.0	0.84	0.76	0.84	44.1
Appro	ach		204	0.0	204	0.0	0.310	11.4	LOS B	0.9	6.0	0.84	0.76	0.84	48.0
West:	Marir	ne Way													
10	L2	All MCs	80	0.0	80	0.0	0.599	5.7	LOS A	2.2	15.4	0.66	0.55	0.66	49.9
11	T1	All MCs	588	0.0	588	0.0	0.599	5.8	LOS A	2.2	15.4	0.66	0.55	0.66	50.3
12	R2	All MCs	36	0.0	36	0.0	0.599	10.5	LOS B	2.2	15.4	0.66	0.55	0.66	39.9
Appro	ach		704	0.0	704	0.0	0.599	6.0	LOS A	2.2	15.4	0.66	0.55	0.66	50.0
All Vel	nicles		1796	0.0	1796	0.0	0.599	6.8	LOS A	2.2	15.4	0.62	0.57	0.62	48.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:00:52 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[02] 03 pm ad (Site Folder: 2025 After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 After Development Site Category: Proposed Design 1 Roundabout

Vehic	nicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
UI		Class	FI Total	IOWS HV 1	FI [Total	lows HV/ 1	Satn	Delay	Service	[Veh	Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		1 1010		km/h
South	Erf 2	2074 Acce	ess												
1	L2	All MCs	42	0.0	42	0.0	0.178	7.3	LOS A	0.5	3.3	0.81	0.75	0.81	18.6
2	T1	All MCs	3	0.0	3	0.0	0.178	7.7	LOS A	0.5	3.3	0.81	0.75	0.81	45.1
3	R2	All MCs	69	0.0	69	0.0	0.178	11.9	LOS B	0.5	3.3	0.81	0.75	0.81	44.0
Appro	ach		115	0.0	115	0.0	0.178	10.1	LOS B	0.5	3.3	0.81	0.75	0.81	40.2
East: I	Marin	e Way													
4	L2	All MCs	161	0.0	161	0.0	0.695	5.5	LOS A	2.9	20.5	0.63	0.53	0.63	47.3
5	T1	All MCs	667	0.0	667	0.0	0.695	5.7	LOS A	2.9	20.5	0.63	0.53	0.63	48.3
6	R2	All MCs	72	0.0	72	0.0	0.695	10.3	LOS B	2.9	20.5	0.63	0.53	0.63	51.5
Appro	ach		900	0.0	900	0.0	0.695	6.0	LOS A	2.9	20.5	0.63	0.53	0.63	48.6
North:	Chal	lenge Driv	ve												
7	L2	All MCs	140	0.0	140	0.0	0.232	7.0	LOS A	0.6	4.0	0.66	0.67	0.66	51.5
8	T1	All MCs	6	0.0	6	0.0	0.232	7.2	LOS A	0.6	4.0	0.66	0.67	0.66	46.9
9	R2	All MCs	56	0.0	56	0.0	0.232	11.9	LOS B	0.6	4.0	0.66	0.67	0.66	47.3
Appro	ach		202	0.0	202	0.0	0.232	8.4	LOS A	0.6	4.0	0.66	0.67	0.66	50.7
West:	Marir	ne Way													
10	L2	All MCs	53	0.0	53	0.0	0.412	4.8	LOS A	1.2	8.5	0.43	0.50	0.43	50.6
11	T1	All MCs	374	0.0	374	0.0	0.412	4.9	LOS A	1.2	8.5	0.43	0.50	0.43	51.0
12	R2	All MCs	101	0.0	101	0.0	0.412	9.6	LOS A	1.2	8.5	0.43	0.50	0.43	41.1
Appro	ach		527	0.0	527	0.0	0.412	5.8	LOS A	1.2	8.5	0.43	0.50	0.43	49.9
All Vel	nicles		1744	0.0	1744	0.0	0.695	6.5	LOS A	2.9	20.5	0.59	0.55	0.59	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:01:21 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

ANNEXURE G SIDRA OUTPUT SHEETS 2030 After Development

Site: 101v [[03] 01 am ad - Circle (Site Folder: 2030 After Development)]

Network: N101 [2030 After AM (Network Folder: After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 After Development Site Category: Proposed Design 2 Roundabout

Vehic	le M	ovement	t Perfo	orma	nce										
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
טו		Class	F [Total	HV]	Fi Total]	HV]	Sain	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
0		1	veh/h	%	veh/h	%	V/C	sec	_	veh	m	_	_	_	km/h
South	: vvna	liesong A	ccess												
1	L2	All MCs	2	0.0	2	0.0	0.016	9.6	LOSA	0.0	0.3	0.80	0.68	0.80	31.2
2	T1	All MCs	3	0.0	3	0.0	0.016	10.0	LOS A	0.0	0.3	0.80	0.68	0.80	30.5
3	R2	All MCs	3	0.0	3	0.0	0.016	13.1	LOS B	0.0	0.3	0.80	0.68	0.80	16.9
Appro	ach		8	0.0	8	0.0	0.016	11.1	LOS B	0.0	0.3	0.80	0.68	0.80	27.2
East:	Marin	e Way													
4	L2	All MCs	3	0.0	3	0.0	0.004	5.7	LOS A	0.0	0.1	0.33	0.50	0.33	41.5
5	T1	All MCs	755	0.0	755	0.0	0.515	5.4	LOS A	2.2	15.2	0.45	0.46	0.45	45.0
6	R2	All MCs	8	0.0	8	0.0	0.515	8.7	LOS A	2.2	15.2	0.45	0.46	0.45	43.3
Appro	ach		766	0.0	766	0.0	0.515	5.5	LOS A	2.2	15.2	0.45	0.46	0.45	45.0
North:	Ultra	City Acce	ess												
7	L2	All MCs	81	0.0	81	0.0	0.114	10.1	LOS B	0.3	1.9	0.72	0.71	0.72	29.3
8	T1	All MCs	1	0.0	1	0.0	0.107	9.1	LOS A	0.3	1.9	0.71	0.72	0.71	29.8
9	R2	All MCs	91	0.0	91	0.0	0.107	12.4	LOS B	0.3	1.9	0.71	0.72	0.71	34.9
Appro	ach		173	0.0	173	0.0	0.114	11.3	LOS B	0.3	1.9	0.72	0.72	0.72	33.0
West:	Marir	ne Way													
10	L2	All MCs	68	0.0	68	0.0	0.063	5.0	LOS A	0.1	1.0	0.11	0.53	0.11	42.9
11	T1	All MCs	707	0.0	707	0.0	0.410	4.8	LOS A	1.5	10.2	0.13	0.45	0.13	40.9
12	R2	All MCs	1	0.0	1	0.0	0.410	8.1	LOS A	1.5	10.2	0.13	0.45	0.13	38.8
Appro	ach		777	0.0	777	0.0	0.410	4.8	LOS A	1.5	10.2	0.13	0.45	0.13	41.2
All Ve	hicles		1724	0.0	1724	0.0	0.515	5.8	LOS A	2.2	15.2	0.33	0.49	0.33	42.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:04:43 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

Site: 101v [[03] 01 pm ad - Circle (Site Folder: 2030 After Development)]

Network: N101 [2030 After PM (Network Folder: After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 After Development Site Category: Proposed Design 2 Roundabout

Vehic	ehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
שו		Class	٦ Total آ	IOWS HV 1	۲۱ Total آ	iows HV 1	Sath	Delay	Service	[Veh.	Dist 1	Que	Stop Rate	NO. OT Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
South	: Wha	lesong A	ccess												
1	L2	All MCs	5	0.0	5	0.0	0.039	12.6	LOS B	0.1	0.7	0.90	0.78	0.90	28.0
2	T1	All MCs	3	0.0	3	0.0	0.039	12.9	LOS B	0.1	0.7	0.90	0.78	0.90	27.1
3	R2	All MCs	7	0.0	7	0.0	0.039	16.0	LOS B	0.1	0.7	0.90	0.78	0.90	14.0
Appro	ach		16	0.0	16	0.0	0.039	14.2	LOS B	0.1	0.7	0.90	0.78	0.90	22.9
East: I	Marin	e Way													
4	L2	All MCs	6	0.0	6	0.0	0.008	6.3	LOS A	0.0	0.1	0.42	0.52	0.42	41.0
5	T1	All MCs	857	0.0	857	0.0	0.632	6.2	LOS A	2.9	20.1	0.66	0.53	0.66	43.7
6	R2	All MCs	1	0.0	1	0.0	0.632	9.5	LOS A	2.9	20.1	0.66	0.53	0.66	42.0
Appro	ach		864	0.0	864	0.0	0.632	6.2	LOS A	2.9	20.1	0.65	0.53	0.65	43.7
North:	Ultra	City Acce	ess												
7	L2	All MCs	28	0.0	28	0.0	0.050	10.2	LOS B	0.1	0.7	0.66	0.71	0.66	29.0
8	T1	All MCs	1	0.0	1	0.0	0.167	8.0	LOS A	0.4	2.9	0.65	0.70	0.65	31.0
9	R2	All MCs	160	0.0	160	0.0	0.167	11.3	LOS B	0.4	2.9	0.65	0.70	0.65	35.9
Appro	ach		189	0.0	189	0.0	0.167	11.1	LOS B	0.4	2.9	0.65	0.70	0.65	35.3
West:	Marir	ne Way													
10	L2	All MCs	101	0.0	101	0.0	0.090	4.9	LOS A	0.2	1.7	0.11	0.53	0.11	43.0
11	T1	All MCs	548	0.0	548	0.0	0.318	4.8	LOS A	1.2	8.2	0.11	0.45	0.11	41.1
12	R2	All MCs	1	0.0	1	0.0	0.318	8.0	LOS A	1.2	8.2	0.11	0.45	0.11	38.9
Appro	ach		651	0.0	651	0.0	0.318	4.8	LOS A	1.2	8.2	0.11	0.46	0.11	41.5
All Vel	nicles		1720	0.0	1720	0.0	0.632	6.3	LOS A	2.9	20.1	0.45	0.52	0.45	42.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:05:14 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[03] 03 am ad (Site Folder: 2030 After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 After Development Site Category: Future Conditions 1 Roundabout

Vehicle Movement Performance															
Mov Turn Mov		Den	hand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.	
שו		Class	٦ [Total]	HV]	Total	HV]	Saur	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	Erf 2	2074 Acce	ess												
1	L2	All MCs	107	0.0	107	0.0	0.385	7.2	LOS A	1.1	7.5	0.81	0.75	0.81	18.9
2	T1	All MCs	7	0.0	7	0.0	0.385	7.6	LOS A	1.1	7.5	0.81	0.75	0.81	45.3
3	R2	All MCs	173	0.0	173	0.0	0.385	11.7	LOS B	1.1	7.5	0.81	0.75	0.81	44.2
Appro	ach		287	0.0	287	0.0	0.385	9.9	LOS A	1.1	7.5	0.81	0.75	0.81	40.3
East: I	Marin	e Way													
4	L2	All MCs	58	0.0	58	0.0	0.511	4.8	LOS A	1.8	12.7	0.48	0.47	0.48	48.2
5	T1	All MCs	566	0.0	566	0.0	0.511	5.0	LOS A	1.8	12.7	0.48	0.47	0.48	49.2
6	R2	All MCs	46	0.0	46	0.0	0.511	9.6	LOS A	1.8	12.7	0.48	0.47	0.48	52.1
Appro	ach		671	0.0	671	0.0	0.511	5.3	LOS A	1.8	12.7	0.48	0.47	0.48	49.5
North:	Chal	lenge Driv	ve												
7	L2	All MCs	138	0.0	138	0.0	0.393	11.0	LOS B	1.2	8.3	0.91	0.80	0.94	48.5
8	T1	All MCs	1	0.0	1	0.0	0.393	11.2	LOS B	1.2	8.3	0.91	0.80	0.94	42.6
9	R2	All MCs	92	0.0	92	0.0	0.393	15.8	LOS B	1.2	8.3	0.91	0.80	0.94	42.6
Appro	ach		231	0.0	231	0.0	0.393	12.9	LOS B	1.2	8.3	0.91	0.80	0.94	46.8
West:	Marir	ne Way													
10	L2	All MCs	91	0.0	91	0.0	0.675	6.3	LOS A	2.9	20.5	0.74	0.59	0.76	49.5
11	T1	All MCs	666	0.0	666	0.0	0.675	6.4	LOS A	2.9	20.5	0.74	0.59	0.76	49.9
12	R2	All MCs	36	0.0	36	0.0	0.675	11.1	LOS B	2.9	20.5	0.74	0.59	0.76	39.3
Appro	ach		793	0.0	793	0.0	0.675	6.6	LOS A	2.9	20.5	0.74	0.59	0.76	49.6
All Vel	nicles		1981	0.0	1981	0.0	0.675	7.4	LOS A	2.9	20.5	0.68	0.60	0.69	48.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:04:43 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[03] 03 pm ad (Site Folder: 2030 After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 After Development Site Category: Future Conditions 1 Roundabout

Vehicle Movement Performance															
Mov Turn Mov		Dem	hand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	e Prop.	Eff.	Aver.	Aver.	
שו		Class	[Total	HV]	[Total	HV]	Sau	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speeu
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	Erf 2	2074 Acce	ess												
1	L2	All MCs	42	0.0	42	0.0	0.212	8.7	LOS A	0.6	4.2	0.89	0.78	0.89	17.1
2	T1	All MCs	3	0.0	3	0.0	0.212	9.1	LOS A	0.6	4.2	0.89	0.78	0.89	43.9
3	R2	All MCs	69	0.0	69	0.0	0.212	13.2	LOS B	0.6	4.2	0.89	0.78	0.89	42.8
Appro	ach		115	0.0	115	0.0	0.212	11.4	LOS B	0.6	4.2	0.89	0.78	0.89	38.7
East: I	Marin	e Way													
4	L2	All MCs	161	0.0	161	0.0	0.773	6.2	LOS A	4.0	28.0	0.75	0.57	0.77	46.6
5	T1	All MCs	756	0.0	756	0.0	0.773	6.4	LOS A	4.0	28.0	0.75	0.57	0.77	47.5
6	R2	All MCs	81	0.0	81	0.0	0.773	11.0	LOS B	4.0	28.0	0.75	0.57	0.77	51.1
Appro	ach		998	0.0	998	0.0	0.773	6.8	LOS A	4.0	28.0	0.75	0.57	0.77	47.9
North:	Chal	lenge Dri	ve												
7	L2	All MCs	159	0.0	159	0.0	0.276	7.5	LOS A	0.7	4.9	0.71	0.69	0.71	51.2
8	T1	All MCs	6	0.0	6	0.0	0.276	7.7	LOS A	0.7	4.9	0.71	0.69	0.71	46.4
9	R2	All MCs	63	0.0	63	0.0	0.276	12.4	LOS B	0.7	4.9	0.71	0.69	0.71	46.8
Appro	ach		228	0.0	228	0.0	0.276	8.9	LOS A	0.7	4.9	0.71	0.69	0.71	50.3
West:	Marir	ne Way													
10	L2	All MCs	60	0.0	60	0.0	0.459	4.9	LOS A	1.4	9.9	0.46	0.50	0.46	50.5
11	T1	All MCs	422	0.0	422	0.0	0.459	5.0	LOS A	1.4	9.9	0.46	0.50	0.46	50.9
12	R2	All MCs	101	0.0	101	0.0	0.459	9.7	LOS A	1.4	9.9	0.46	0.50	0.46	40.9
Appro	ach		583	0.0	583	0.0	0.459	5.8	LOS A	1.4	9.9	0.46	0.50	0.46	49.9
All Vel	nicles		1924	0.0	1924	0.0	0.773	7.0	LOS A	4.0	28.0	0.67	0.58	0.67	48.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:05:14 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

ANNEXURE H SIDRA OUTPUT SHEETS 2030 After Development: Peak Season

Site: 101v [[04] 01 am ad - Circle (Site Folder: 2030 Peak Season After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [2030 Peak Season AM (Network Folder: After Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Future Conditions 2 Roundabout

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	COf Queue	e Prop.	Eff.	Aver.	Aver.
ט ו		Class	٦ Total آ	IOWS HV 1	۲۱ Total آ	iows HV 1	Sath	Delay	Service	[Veh.	Dist 1	Que	Stop Rate	NO. OT Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			- ,	km/h
South:	Wha	lesong A	ccess												
1	L2	All MCs	3	0.0	3	0.0	0.029	13.0	LOS B	0.1	0.5	0.90	0.76	0.90	27.9
2	T1	All MCs	4	0.0	4	0.0	0.029	13.4	LOS B	0.1	0.5	0.90	0.76	0.90	27.0
3	R2	All MCs	4	0.0	4	0.0	0.029	16.4	LOS B	0.1	0.5	0.90	0.76	0.90	13.8
Approa	ach		12	0.0	12	0.0	0.029	14.4	LOS B	0.1	0.5	0.90	0.76	0.90	23.9
East: N	Marin	e Way													
4	L2	All MCs	4	0.0	4	0.0	0.005	5.9	LOS A	0.0	0.1	0.37	0.50	0.37	41.3
5	T1	All MCs	919	0.0	919	0.0	0.645	5.8	LOS A	3.3	22.9	0.60	0.49	0.60	44.1
6	R2	All MCs	11	0.0	11	0.0	0.645	9.1	LOS A	3.3	22.9	0.60	0.49	0.60	42.3
Approa	ach		934	0.0	934	0.0	0.645	5.9	LOS A	3.3	22.9	0.60	0.49	0.60	44.0
North:	Ultra	City Acce	ess												
7	L2	All MCs	101	0.0	101	0.0	0.172	12.6	LOS B	0.4	3.1	0.82	0.76	0.82	26.0
8	T1	All MCs	1	0.0	1	0.0	0.157	11.1	LOS B	0.4	3.0	0.82	0.75	0.82	27.8
9	R2	All MCs	113	0.0	113	0.0	0.157	14.4	LOS B	0.4	3.0	0.82	0.75	0.82	33.0
Approa	ach		215	0.0	215	0.0	0.172	13.5	LOS B	0.4	3.1	0.82	0.76	0.82	30.6
West:	Marir	ne Way													
10	L2	All MCs	85	0.0	85	0.0	0.080	5.0	LOS A	0.2	1.3	0.13	0.52	0.13	42.8
11	T1	All MCs	877	0.0	877	0.0	0.512	4.9	LOS A	2.1	15.0	0.17	0.44	0.17	40.4
12	R2	All MCs	1	0.0	1	0.0	0.512	8.1	LOS A	2.1	15.0	0.17	0.44	0.17	38.4
Approa	ach		963	0.0	963	0.0	0.512	4.9	LOS A	2.1	15.0	0.17	0.45	0.17	40.7
All Veh	nicles		2123	0.0	2123	0.0	0.645	6.2	LOS A	3.3	22.9	0.43	0.50	0.43	41.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:07:36 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

🦞 Site: 101ν [[04] 01 pm ad - Circle (Site Folder: 2030 Peak Season After Development)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [2030 Peak Season PM (Network Folder: After Development)]

Stop Rate

0.86

0.86

0.86

0.86

0.54

0.67

Que

1.00

1.00

1.00

1.00

0.47

0.94

Aver.

1.00

1.00

1.00

1.00

0.47

1.02

No. of Cycles

Aver

Speed

km/h

22.5

21.6

9.9

17.5

40.6

42.1

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2025 Before Development Site Category: Future Conditions 2 Roundabout

Vehicle Movement Performance Mov ID Turn Mov Class Aver. Back Of Queue Prop. Demand Deg. Satn <u>Delay</u> Service Flows Flows [Total HV] [Total HV] [Veh. Dist] veh/h veh/h South: Whalesong Access L2 All MCs 6 0.0 6 0.0 0.085 20.2 LOS C 0.2 1.7 1 2 T1 All MCs 4 0.0 4 0.0 0.085 20.5 LOS C 0.2 1.7 3 R2 All MCs 9 0.0 9 0.0 0.085 23.6 LOS C 0.2 1.7 0.2 1.7 Approach 20 0.0 20 0.0 0.085 21.9 LOS C East: Marine Way 4 L2 All MCs 7 0.0 7 0.0 0.010 6.7 LOS A 0.0 0.2 5 T1 All MCs 1060 0.0 1060 0.0 0.816 8.8 LOS A 5.8 40.6

6	R2	All MCs	1	0.0	1	0.0	0.816	12.1	LOS B	5.8	40.6	0.94	0.67	1.02	40.4
Appr	oach		1068	0.0	1068	0.0	0.816	8.8	LOS A	5.8	40.6	0.93	0.67	1.02	42.1
North	n: Ultra	City Acce	ess												
7	L2	All MCs	35	0.0	35	0.0	0.067	11.6	LOS B	0.1	1.0	0.71	0.75	0.71	27.2
8	T1	All MCs	1	0.0	1	0.0	0.229	9.1	LOS A	0.6	4.3	0.74	0.73	0.74	29.8
9	R2	All MCs	200	0.0	200	0.0	0.229	12.4	LOS B	0.6	4.3	0.74	0.73	0.74	34.8
Appr	oach		236	0.0	236	0.0	0.229	12.3	LOS B	0.6	4.3	0.73	0.73	0.73	34.1
West	: Marir	ne Way													
10	L2	All MCs	126	0.0	126	0.0	0.113	5.0	LOS A	0.3	2.2	0.13	0.52	0.13	42.8
11	T1	All MCs	661	0.0	661	0.0	0.386	4.8	LOS A	1.6	11.1	0.15	0.44	0.15	40.7
12	R2	All MCs	1	0.0	1	0.0	0.386	8.1	LOS A	1.6	11.1	0.15	0.44	0.15	38.6
Appr	oach		788	0.0	788	0.0	0.386	4.8	LOS A	1.6	11.1	0.15	0.45	0.15	41.2
All Ve	ehicles		2113	0.0	2113	0.0	0.816	7.8	LOS A	5.8	40.6	0.62	0.60	0.66	40.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:09:13 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[04] 03 am ad (Site Folder: 2030 Peak Season After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [2030 Peak Season AM (Network Folder: After Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 Peak Season After Development Site Category: Future Conditions 2 Roundabout

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	hand	Ar	rival	Deg. Sata	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff. Stop	Aver.	Aver.
שו		Class	[Total	HV]	[Total	HV]	Saur	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speeu
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Erf 2	2074 Acce	ess												
1	L2	All MCs	107	0.0	107	0.0	0.489	11.5	LOS B	1.7	11.7	0.94	0.87	1.11	14.5
2	T1	All MCs	7	0.0	7	0.0	0.489	11.9	LOS B	1.7	11.7	0.94	0.87	1.11	41.4
3	R2	All MCs	173	0.0	173	0.0	0.489	16.0	LOS B	1.7	11.7	0.94	0.87	1.11	40.5
Appro	ach		287	0.0	287	0.0	0.489	14.2	LOS B	1.7	11.7	0.94	0.87	1.11	35.8
East:	Marin	e Way													
4	L2	All MCs	58	0.0	58	0.0	0.644	5.2	LOS A	2.8	19.4	0.63	0.51	0.63	47.3
5	T1	All MCs	708	0.0	708	0.0	0.644	5.4	LOS A	2.8	19.4	0.63	0.51	0.63	48.2
6	R2	All MCs	58	0.0	58	0.0	0.644	10.0	LOS A	2.8	19.4	0.63	0.51	0.63	51.5
Appro	ach		824	0.0	824	0.0	0.644	5.7	LOS A	2.8	19.4	0.63	0.51	0.63	48.5
North:	Chal	lenge Driv	ve												
7	L2	All MCs	173	0.0	173	0.0	0.699	27.0	LOS C	3.2	22.3	1.00	1.12	1.56	40.1
8	T1	All MCs	1	0.0	1	0.0	0.699	27.1	LOS C	3.2	22.3	1.00	1.12	1.56	31.9
9	R2	All MCs	115	0.0	115	0.0	0.699	31.8	LOS C	3.2	22.3	1.00	1.12	1.56	31.4
Appro	ach		288	0.0	288	0.0	0.699	28.9	LOS C	3.2	22.3	1.00	1.12	1.56	37.4
West:	Marir	ne Way													
10	L2	All MCs	113	0.0	113	0.0	0.843	10.0	LOS A	6.3	43.9	0.98	0.77	1.17	47.8
11	T1	All MCs	835	0.0	835	0.0	0.843	10.1	LOS B	6.3	43.9	0.98	0.77	1.17	48.2
12	R2	All MCs	36	0.0	36	0.0	0.843	14.8	LOS B	6.3	43.9	0.98	0.77	1.17	36.8
Appro	ach		983	0.0	983	0.0	0.843	10.3	LOS B	6.3	43.9	0.98	0.77	1.17	47.9
All Ve	hicles		2383	0.0	2383	0.0	0.843	11.4	LOS B	6.3	43.9	0.85	0.73	1.02	45.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:07:36 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9

V Site: 101 [[04] 03 pm ad (Site Folder: 2030 Peak Season After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [2030 Peak Season PM (Network Folder: After Development)]

Traffic Impact Assessment for proposed residential development on erf 2074, Plettenberg Bay 2030 Peak Season After Development Site Category: Future Conditions 2 Roundabout

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	H Intel I	lows µ\/1	 Total	lows µ\/1	Satn	Delay	Service	[\/eh	Diet 1	Que	Stop Rate	No. of	Speed
			veh/h	" %	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	Erf 2	2074 Acce	ess												
1	L2	All MCs	42	0.0	42	0.0	0.346	13.6	LOS B	1.1	7.6	1.00	0.86	1.00	13.0
2	T1	All MCs	3	0.0	3	0.0	0.346	14.0	LOS B	1.1	7.6	1.00	0.86	1.00	39.7
3	R2	All MCs	69	0.0	69	0.0	0.346	18.2	LOS B	1.1	7.6	1.00	0.86	1.00	38.8
Appro	ach		115	0.0	115	0.0	0.346	16.4	LOS B	1.1	7.6	1.00	0.86	1.00	34.1
East:	Marin	e Way													
4	L2	All MCs	161	0.0	161	0.0	0.948	14.9	LOS B	12.2	85.1	1.00	1.01	1.35	40.2
5	T1	All MCs	946	0.0	946	0.0	0.948	15.1	LOS B	12.2	85.1	1.00	1.01	1.35	40.4
6	R2	All MCs	101	0.0	101	0.0	0.948	19.7	LOS B	12.2	85.1	1.00	1.01	1.35	46.6
Appro	ach		1208	0.0	1208	0.0	0.948	15.4	LOS B	12.2	85.1	1.00	1.01	1.35	41.2
North:	Chal	lenge Driv	ve												
7	L2	All MCs	198	0.0	198	0.0	0.389	8.8	LOS A	1.1	7.7	0.82	0.74	0.82	50.3
8	T1	All MCs	6	0.0	6	0.0	0.389	8.9	LOS A	1.1	7.7	0.82	0.74	0.82	45.1
9	R2	All MCs	79	0.0	79	0.0	0.389	13.6	LOS B	1.1	7.7	0.82	0.74	0.82	45.4
Appro	ach		283	0.0	283	0.0	0.389	10.1	LOS B	1.1	7.7	0.82	0.74	0.82	49.3
West:	Marir	ne Way													
10	L2	All MCs	75	0.0	75	0.0	0.566	5.2	LOS A	2.1	14.4	0.58	0.52	0.58	50.1
11	T1	All MCs	528	0.0	528	0.0	0.566	5.4	LOS A	2.1	14.4	0.58	0.52	0.58	50.5
12	R2	All MCs	101	0.0	101	0.0	0.566	10.0	LOS B	2.1	14.4	0.58	0.52	0.58	40.3
Appro	ach		704	0.0	704	0.0	0.566	6.0	LOS A	2.1	14.4	0.58	0.52	0.58	49.6
All Ve	nicles		2311	0.0	2311	0.0	0.948	11.9	LOS B	12.2	85.1	0.85	0.82	1.03	44.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 22 August 2024 4:09:13 PM Project: F:\2200-2299\2296\Design\SIDRA\erf 2074, Plettenberg Bay.sip9