PROPOSED NEW DEVELOPMENT ON FARM 216 PORTION 29, BELVEDERE ROAD, UITZICHT, KNYSNA

STORMWATER MANAGEMENT PLAN

Prepared for:

CRABS CREEK (PTY)LTD

P.O. Box 41041 CRAIGHALL PARK GAUTENG, 2024 For Attention: J. Sayers 082 905 2587

Prepared by:

Graeme McGill consulting

> Tel: 021 976 0386 Mobile: 082 550 9108 graeme@mcgillconsulting.co.za

Tel: 044 343 2093 Mobile: 083 292 9047 fraser@fcce.co.za

Report No.: MC411-01 Revision: 00 Date: 2023-04-13

PROPOSED NEW DEVELOPMENT ON FARM 216 PORTION 29, BELVEDERE ROAD, UITZICHT, KNYSNA

STORMWATER MANAGEMENT PLAN

	CONTENTS	PAGE
	EXECUTIVE SUMMARY	
1	PROPOSED DEVELOPMENT	1
2	APPLICABLE CONDITIONS	3
2.1	CITY OF CAPE TOWN STORMWATER POLICIES	3
3	PRE-DEVELOPMENT CONDITIONS	4
3.1	STORM RUNOFF MODELLING	4
3.2	EXISTING STORMWATER INFRASTRUCTURE	5
3.3	PRE-DEVELOPMENT RUNOFF PEAKS	5
4	POST-DEVELOPMENT STORMWATER MANAGEMENT – QUANTITY AND RATE OF RUNOFF	9
4.1	REQUIREMENTS	9
4.2	RUNOFF ANALYSIS	9
4.3	OUTLET STRUCTURE	13
4.4	SUMMARY: QUANTITY AND RATE OF RUNOFF	14
5	POST-DEVELOPMENT STORMWATER MANAGEMENT – QUALITY TREATMENT	15
5.1	OBJECTIVES	15
5.2	LITTER AND SEDIMENT TRAP	15
5.3	SUSPENDED SOLIDS (SS) AND TOTAL PHOSPHORUS (TP) REMOVAL	15
6	STORMWATER MANAGEMNT	16
6.1	STORMWATER VOLUME AND RATE OF RUNOFF	16
6.2	STORMWATER QUALITY	16
6.3	PROVISION FOR OVERLAND ESCAPE ROUTES	16
7	MAINTENANCE	16
8	CONCLUSIONS	19
8.1	PROPOSED DEVELOPEMNT	19
8.2	EXISTING CONDITIONS	19
8.3	RUNOFF PEAK ATTENUATION	19
8.4	RUNOFF WATER QUALITY TREATMENT	19
8.5	STORMWATER MANAGEMENT	19

8.6 MAINTENANCE DRAWINGS MC410-C900 CATCHMENT AREAS MC410-C901 STORMWATER MANAGEMENT PLAN

19

ANNEXURES

- A PRE-DEVELOPMENT RUNOFF
- B POST-DEVELOPMENT RUNOFF

iii

EXECUTIVE SUMMARY

It is proposed to re-develop the site of Crabs Creek to a Farm Stall, Restaurant and four bed and breakfast units. The site is Portion 29 of the farm Uitzicht 216, Knysna.

The total site area is 3894 m^2 , with the proposed building footprint being approximately 1084 m^2 . The parking area extends to the adjacent erf and the total area to be formalized with brick paving will be approximately 1800m^2 .

This report deals with the management of the quantity and rate of stormwater runoff, as well as the management of the water quality of the runoff. It is a Stormwater Management Plan (SMP). The goal of the SMP Report is to implement Sustainable Drainage Systems (SuDS) which maintain or mimic the natural flow systems as well as prevent pollutants entering receiving waters. The objectives are attenuation for flows up to the 50 year Recurrence Interval (RI), and wrt water quality, an 80% reduction of suspended solids and a 45% reduction in total phosphate content leaving the site.

The system was modelled using the SWMM 5.1 hydrology-hydraulic water quality simulation model.

The previous buildings have been demolished. The existing stormwater infrastructure was fairly minimal with only a diameter 375mm pipe collecting water from the Divisional Road. The pipeline is fairly derelict and causes erosion at the Estuary.

The external catchments are described by Drawing MC410-C900 and are catchments A1(64 ha), A2(150 ha), A3(1.4 ha) and A4 (0.54ha). The flow routes of catchments A1 and A2 are ill-defined and appear to drain informally to the Estuary to the north-west of Crabs Creek. Catchment A3 drains down the Divisional Road. Upstream of Crabs Creek it flows over the road to the Crabs Creek side and along a kerb and channel alongside the road. From the kerb and channel it enters an informal channel that leads to the derelict diameter 375mm pipe that leads to the Estuary. Catchment A4, which is immediately to the south of the study area, drains over a retaining wall to the site.

As far as mimicking the pre-development situation, the pre-development was taken as an undeveloped site. The estimated 50 year and 100 year RI runoffs were estimated as 125 I/s and 168 I/s respectively.

The post-development stormwater management has roof runoff directed towards the landscaped areas and thereafter the paved parking areas; the parking areas geometrics lead all site runoff to an attenuation/infiltration pond at the north-western corner of the site. Besides the geometrics leading runoff to the north-western corner, a Vee channel, catchpits, and a diameter 375mm pipe system convey the runoff to the attenuation/infiltration pond. The piped system convey flows to the 1:5 year RI peak runoff, with the higher flows being conveyed over the parking area to the attenuation pond. This is shown in Drawing MC410-C901.

The external flows from the Divisional Road (Catchment A3) are picked up by a double catchpit on the northern (Crabs Creek) side of the Divisional Road. From this catchpit a new diameter 375mm pipeline leads the flow to downstream of the attenuation pond. Drawing MC410-C901 shows a watershed (red line) at the bellmouth entrance to the site. This is a mild hump to avoid excessive flows entering the Crabs Creek parking area. The excess flows from Catchment A3 continue down the Divisional Road.

Stormwater from Catchment A4 flows over the boundary wall. Whilst it can be accommodated in the proposed parking area and Stormwater pipe system leading to the attenuation/infiltration pond, we recommend that a W4 Channel be installed at the base of the wall to convey the flow eastwards. A Reno mattress should be installed at the outlet to dissipate the flow energy. The Reno mattress should be a land-based feature discharging to grass so as not to trigger any Water Use License Applications (WULA) or similar.

To attenuate the flow from the Crabs Creek precinct (portion 29 of farm 216), as well as the additional parking on portion 150, an attenuation pond of size 73m³ is required. This is shown on Drawing MC410-901. The controlled outlet structure of the pond should have an orifice, trapezoidal weir and spillway as described in Table 5 and on Drawing MC410-901. With these attenuation mechanisms the post-development runoff is 112 l/s for the 50 year RI flows, and 151 l/s for the 100 year RI flows. This is less than the pre-development flows of 125 l/s and 168 l/s respectively. Figure 9 of the Report shows that the attenuation pond and controlled outlet structure achieves similar results (post development no more than pre-development) over the full range of RI's from 1 year to 100 year RI peak flows. The SuDS objective wrt quantity and rate of runoff is therefore achieved.

Part of the SMP is to improve stormwater quality by reducing suspended solids by 80% and total phosphorus by 45%. Due to the developments limited available space, an enhanced swale/pond was the only method considered for treatment.

It is expected that general site maintenance will limit the accumulation of litter. Sediment traps are proposed for each catchpit by lowering the base of the catchpits by 100 mm below the invert level of the outgoing pipe. A forebay is provided at the entrance to the attenuation pond where litter and sediment will be collected.

Runoff from the site will be discharged into the attenuation/infiltration pond. Plan and schematic views are shown in drawing MC410-C901. The pond will comprise of a forebay basin and an enhanced swale area. The entire pond and swale surface area will be covered with cynodon or similar grass.

Stormwater inflow will be conveyed to the forebay from where it overflows onto the swale area of $50m^2$, which is designed to accommodate the $\frac{1}{2}$ year RI Peak Volume of $5m^3$ from the site through infiltration. The treatment volume will have a depth of 100mm which will drain through the swale area by infiltration over a maximum of 24 hours, to a 110mm perforated underdrain pipe discharging to the outlet structure. The anticipated total phosphorus removal rate by natural infiltration is 50%. The SuDS objective wrt total phosphorus removal is therefore achieved.

The forebay basin is designed to facilitate the removal of suspended solids before they can enter the attenuation pond. Catchpits within the development will have sediment traps as part of the structure, which will further enhance the removal of suspended solids before they enter the attenuation pond. The suspended solids removal rate is expected to be 80%. The SuDS objective wrt suspended solids removal is therefore achieved. Therefore, together with the total phosphorus removal, the Water Quality Objectives of SuDS have been achieved.

A Maintenance Schedule is issued as Section 7 which lists activities as either: Inspection, Routine or Other. Time frames are given. The ongoing sustainability of the system is dependent upon it's effective maintenance.

PROPOSED NEW DEVELOPMENT ON FARM 216 PORTION 29, BELVEDERE ROAD, UITZICHT, KNYSNA

STORMWATER MANAGEMENT PLAN

1. PROPOSED DEVELOPMENT

Farm 216 Portion 29 in the Knysna Municipal region, is situated just east of the N2 national road between the Belvidere/Brenton-on-sea Divisional Road and the Knysna Lagoon.

The 3894m² property previously consisted of a building which was used as a restaurant, but has since been demolished.

The new proposed development will consist of a Farm Stall and Restaurant building with adjacent Bed and Breakfast units and a parking area. The building footprint will be approximately 1084m². The existing gravel road entrance from the main road will be upgraded and surfaced with brick paving, which will lead to a paved parking area. The parking area will extend further into the adjacent property Portion 150 of Farm 216. The area to be formalised with brick paving will be approximately 1800m².

Figure 2 shows the layout for the proposed development prepared by Moffett & Moffett Architects.

The subject of this report is the management of the quality, volume and rate of stormwater runoff from the site, with a view to preparing a Stormwater Management Plan(SWMP) which satisfies the objectives of the Knysna Municipality.

FIGURE 1: LOCALITY OF THE DEVELOPMENT SITE: FARM 216 PTN 29, BELVEDERE ROAD, UITZICHT, KNYSNA

Graeme McGill Consulting

FIGURE 2: PROPOSED SITE DEVELOPMENT PLAN

ES	GENERAL NOTES	
d + 120mm and d + 120mm and line defit to far it began to the to the mitting and a table. In a distribution the SANS 1152, a gate without the SANS 1152, a gate without the Sanst a Cantil	The design on this develop is copyright and ensure the property Kitelin & Marine Architech, Copyright a many of Kitelin & Marine Architech, Copyright a property of the control of the structure of the property of the control of the form of the Architech and the structure of the structure of the Architech and the many of the structure of the Architech and architech and as is being communicated of and Architech architech and architech and architech and architech architech and architech and architech architech and architech and architech architech and architech and architech architech and architech architech and architech archi	
th class 32 in he ration main with th SIAS h, and 4 hel nethed	Municipal Approv al:	
Wis 27. conditionally of to be used bridlers to bridlers to blate. Use tillor, be tillor, be tillor, be tillor, be		
rad course in course in seriops over the other pings and in demotor with moch cases or course in set. Les or course in whit Les marth 200mm		
and with taken of a weath weblock. eff of the weat of control (a). en with class 1	Ravisions	
inclaim of the	Per Der Innerfig Dauspher	
fard included		
d anns c slashan ar a fac rav d tao mai be cielti denp		
ficate after sized for Seen		
AS 255 coable to floring boards with or which to the north the mi- toolbhed mole with	Project Status: COUNCIL SUBMISSION	
intel car is and iter and iter about ANS 10-62, of probability intends of intends o	Signatures: Clent Archited Auf DAMOFETT PAck 6115 Offer:	
DING		
entro en hurmita 22 to bit 10 bit 4 f. Non e 2005 derochild errische welf kaue 4.4.12 met dann. 3 daues 4.4 ans partitely hauf compt partitely hauf compt partitely bit dann ergenge to come 4.1 und el Elem	MOFFEIT & MOFFEIT ARCHITICIS We make the month of a contract of the month and the month of the month of the month of the month Project Title: Crabe Creek Project Adds so: PTN 29, Krysna Ref. No: G1903	
fatons the the		
dramica. mait far	Date Drawn: 2020-11-25 12:23:54 PM	
the contrary ridy	Date Checked: 2020/0005	
tion of the	Checked By: D.MOPPETT. PArch 6115	
radia of a nation of a constained incipal agent alend alenga, bacture cost. august, august, august, august,	Site Development Plan, Site Plan, Roof Plan, Stormwater Layout & Setting Out Plan	
multiplice	Occupation Classification: A1 F2 H1	
eth national 11.	Scalas : As Sharen ARCH 102	
		e

2. APPLICABLE CONDITIONS

2.1 STORM MANAGEMENT

The goal of the Stormwater Management Report is to implement Sustainable Urban Drainage Systems (SuDS). These systems attempt to maintain or mimic the natural flow systems as well as prevent the wash-off of urban pollutants to receiving waters. The objectives for this report are set out below in Table 1.

TABLE 1: STORMWATER POLICY OBJECTIVES TO BE SATISFIED IN	THE
STORMWATER MANAGEMENT PLAN	

NO.	DESCRIPTION	OBJECTIVE CRITERIA 4 000-50 000 m ²
1	IMPROVE QUALITY OF RUNOFF	
1.1	Reduction of post-development annual stormwater pollutant load discharged from the development site:	Design storm: 1:0.5 year 24 hour duration storm Suspended solids SS – 80% reduction Total phosphorus TP – 45% reduction
2	OBJECTIVE: CONTROL QUANTIT	Y AND RATE OF RUNOFF
2.1	Protect the stability of downstream channels	Provide extended detention of the 1:1 year 24 hour duration storm
2.2	Protect downstream properties from fairly frequent nuisance floods	Up to the 1:10 year peak flow to be reduced to pre-development level.
2.3	Protect floodplain developments and floodplains from adverse	Up to 1:50 year peak flow to be reduced to existing development level.
	impacts of extreme floods	Evaluate effects of 1:100 year storm event on the stormwater management system, adjacent property and downstream facilities and property.

Notes:

1. Items 2.1 and 2.2 are not applicable to this case, as runoff from the property discharges directly to the Knysna Lagoon and therefore does not have any impact on downstream properties.

2. The manner in which the SWMP achieves the objectives listed in this table, is described in Sections 4 and 5.

3. PRE-DEVELOPMENT STORMWATER ANALYSIS

3.1 STORM RUNOFF MODELLING

3.1.1 METHODOLOGY

SWMM is a dynamic hydrology-hydraulic water quality simulation model. It is used for single event or long-term (continuous) simulation of stormwater runoff quantity and quality from primarily urban areas. The runoff component operates on a collection of sub catchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators.

SWMM tracks the quantity and quality of runoff made within each sub catchment. It tracks the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. SWMM 5.1 used for the development can also model the hydrologic performance of specific types of Low Impact Development (LID) controls. The LID controls that the user can choose include the following; Permeable pavements, Vegetative swales and Infiltration trenches.

3.1.2 STORM RAINFALL

The storm data used for this stormwater management plan is derived from SA Weather Bureau station 0013873 BELVEDERE, which is located 1 km from the site (Table 2).

RETURN PERIOD (YR)	POINT STORM RAINFALL DEPTHS (mm) FOR EVENT DURATIONS (MINUTES) OF:									
	10	30	60	120	240	360	720	1440		
0.5	3.3	5.3	6.8	8.3	10.1	11.2	13.4	16.0		
1	6.9	11.3	14.3	17.7	21.4	23.8	28.5	34.0		
2	11.0	17.9	22.8	28.1	34.0	37.8	45.3	54.0		
5	16.3	26.6	33.8	41.6	50.3	56.0	67.1	80.0		
10	20.6	33.6	42.6	52.5	63.5	70.8	84.7	101.0		
20	25.0	40.9	51.9	63.9	77.4	86.2	103.1	123.0		
50	32.0	52.2	66.2	81.6	98.8	110.0	131.6	157.0		
100	38.1	62.2	78.9	97.2	117.7	131.0	156.8	187.0		
NOTES: 1. This da	NOTES: 1. This data is for positions 34°02' S, 22°59' E (BELVEDERE Rain Station)									

TABLE 2: POINT STORM RAINFALL DEPTHS FOR THE DEVELOPMENT SITE

2. The 1:0.5 year and 1:1 year return period rainfall depths have been extrapolated.

3.2 EXISTING STORMWATER INFRASTRUCTURE

The site naturally drains towards the Knysna Lagoon in a north-easterly direction. Stormwater from the site currently runs overland to the lagoon.

There is an existing 375mm \emptyset pipe from the main road, which conveys stormwater runoff from the higher lying properties opposite the main road and the main road itself to the lagoon where the pipe discharges.

Although the main divisional road is formalised with a kerb and channel up to about 5m from the existing entrance, stormwater runoff does overtop the kerb and enter the site during larger storm events.

Catchments A1 and A2 drain to the main divisional road, and what flow does not pass through the 375mm Ø culvert opposite Crabs Creek, will accumulate in the low lying area to the west of the divisional road and extending up to the N2. If this low lying area reaches its maximum capacity the flow will overtop the divisional road at the low point some 70m south of the N2 and north of the development site.

Catchments A3 and A4 drain towards the site and this runoff was taken into account by diverting it to the south of the proposed buildings.

See drawing no. MC410-C900 for the pre-development conditions and catchment areas.

3.3 PRE-DEVELOPMENT RUNOFF PEAKS

The site previously consisted of a main building with a gravel access road with onsite parking. The remains of the top structure have since been demolished and removed leaving only the existing slab area.

Graeme McGill Consulting

No geotechnical investigation was done, but the area does appear to be sandy. No visible rock outcrops could be seen. The Mean High Water Spring is 1.122 msl with the highest recorded water level at 2.2 msl. The site has an average slope of 3.5% towards the lagoon.

As the parking and road area for the proposed development extends into the adjacent property, Farm 216 Portion 150, sub-catchment areas were drawn up accordingly to ensure the pre- and post-development areas matches to calculate the pre- and post-development peak runoffs. The total catchment area of 4848m² was used for the proposed development.

For the purpose of this report the pre-development site was treated as completely undeveloped, draining directly to the lagoon.

The pre-development runoff peaks for the development site have been calculated by using the Autodesk Stormwater and Sanitary Analysis software by means of the EPASWMM modelling method. The development site has been modelled as a single catchment. The results are listed in Table 3 and in Annexure A.

TABLE 3: PRE-DEVELOPMENT SWMM MODEL PARAMETERS AND PEAK FLOWS

RECURRENCE INTERVAL (YRS)	1	2	5	10	50	100
PEAK (l/s)	0.32	4.99	28.47	53.21	125.26	168.27

NOTE:

- 1. The development catchment area is 4569 m^2 .
- 2. The runoff factor is CN 67 Soil Type B.
- 3. The peak flows have been determined by the SWMM method.

	PRE DEVELOPMENT SWMM PARAMETERS											
Subcatchment	Land Use	Reach Length (m)	Outlet	Area (m2)	Width (m)	Average Slope %	% Imperv	N- Imperv	N-Perv	D-store Imp	D-store Perv	CN
Site Pre B1&B2		55		4569.000	83	3.49%	0	0.015	0.15	2	5	67.0
Site Pre A1		1741		643885.000	370	10.83%	0	0.015	0.15	2	5	65.0
Site Pre A2		2643		1499985.000	568	6.50%	0	0.015	0.15	2	5	65.0
Site Pre A3		350		13358.000	38	12.43%	0	0.015	0.15	2	5	65.0
Site Pre A4		17		537.000	32	41.00%	0	0.015	0.15	2	5	56.0
							-			-		

FIGURE 3: PRE-DEVELOPMENT VIEW OF SITE SHOWING ORIGINAL BUILDING SLABS

FIGURE 4: EXISTING CONDITIONS OF THE SITE EXTENT

4. POST-DEVELOPMENT STORMWATER MANAGEMENT – QUANTITY AND RATE OF RUNOFF

4.1 REQUIREMENTS

In Chapter 2, the conditions to be applied to the quantity and rate of runoff for the proposed development are listed:

- (i) Attenuate the peak post-development runoff to pre-development levels for recurrence intervals up to the 1:50 year event.
- (ii) Safely discharge the runoff from the 1:100 year storm event so as not to cause downstream damage.

4.2 RUNOFF ANALYSIS

4.2.1 PROPOSED ON-SITE STORMWATER CONFIGURATION

In order to achieve the attenuation on site for the 4848m² portion to be developed, it is intended to make use of a dry attenuation pond with an enhanced swale type infiltration bed for treatment purposes.

Rooftop runoff from the buildings will discharge through a gutter and downpipe system to the landscaping and continue in an underground pipe system leading to the pond.

The parking and road area will be formalised with kerbs and channels and will be designed to slope away from the buildings and drain overland to the attenuation pond, which will be at the low point of the development. The road and parking area will drain to a catchpit and 375mm Ø underground pipe system, sized to convey at least the 1:5 year RI peak runoff from the development to the attenuation pond.

The attenuation pond will have a controlled outlet structure discharging to a new 375mm stormwater outfall main, which will discharge to a gabion stilling chamber at the lagoon.

4.2.2 PROPOSED OFF-SITE (EXTERNAL) STORMWATER CONFIGURATION

External Catchments A3 and A4 can also contribute to the peak runoff from the site, and therefore it is important to include it in the model to ensure that overland flow can safely be conveyed through the site to the lagoon.

The divisional road is kerbed up to approximately 5m from the entrance to the site. The kerb and channel diverts to an existing open channel which discharges to a 375mm \emptyset stormwater pipe draining to the lagoon. Excess stormwater runoff from the road will accumulate in the low lying area to the west of the divisional road and from there may overtop the road to the north of the development as described in 3.2.

It is proposed to construct a hump in the access road to prevent surface flow on the divisional road from flowing into the parking area on the site.

A new 375mm Ø stormwater pipe will be installed from the catchpit to the of the pond stilling basin.

FIGURE 7: CHANNEL LEADING TO EXISTING 375MM PIPE

The parking area will be shaped to allow overland flow that might occur during major storm events to safely discharge to the lagoon should there be a blockage in the outlet pipe.

See drawing MC410-C901.

Stormwater runoff from the external Sub-Catchment A4 situated between the Divisional Main Road and the site has a steep slope of 41% towards the site. There is an existing boundary wall at the toe of the embankment acting as a retaining wall. Stormwater runoff that might overtop from this area will be diverted to the parking area to the west and the landscaped area to the east by installing a W4 concrete channel below the retaining wall. Flow diverted to the landscaped area to the landscape area to the east will discharge to a Reno mattress to evenly spread flow to the landscape area.

MODEL LAYOUT AND PARAMETERS

The SWMM model layout matches the proposed layout for the new stormwater system (Drawing No MC410-C901). As can be seen from this layout, the entire site was modelled draining to the proposed attenuation pond, with a controlled outlet structure connecting to the 375mm stormwater outfall pipe leading to the outfall stilling chamber at the lagoon.

A summary of the parameters used to model the post-development are shown in Table 4. The model consists of 2 sub-catchments for the development and 4 external sub-catchments.

TABLE 4: POST DEVELOPMENT SWMM MODEL PARAMETERS

POST DEVELOPMENT SWMM PARAMETERS												
Subcatchment	Land Use	Reach Length (m)	Outlet	Area (m2)	Width (m)	Average Slope %	% Imperv	N- Imperv	N-Perv	D-store Imp	D-store Perv	CN
Site Post B1		88.00		3369.00	36.80	0.50%	0.00%	0.015	0.15	2	5	92
Site Post B2		45.00		1200.00	35.70	0.50%	0.00%	0.015	0.15	2	5	83

4.2.3 MODEL RUNOFF AND ATTENUATION (DEVELOPMENT SITE ONLY)

The SWMM model was run for storms ranging from 1:0.5 to 1:100 years. The results in Table 7 summarise the effectiveness of the attenuating pond in each scenario towards achieving compliance w.r.t. Quantity and Rate of Runoff. Details of the outlet structure details for the attenuation pond are provided in Table 5.

The controlled outlet structure orifices and weir have been sized to attenuate peak runoff over the full range of recurrence intervals (1:10 to 1:100 years), to pre-development peak flows as per Table 6 and 7.

Details of the proposed outlet are provided in drawing MC410-C901.

TABLE 5: OUTLET CONTROLS FOR ATTENUATION POND

OUTLET	POND
ORIFICE 1	DIA 60mm @ RL1.5m
WEIR 2	Trapezoidal 130(crest w)x270(h)mm side slopes 1:1(V:H) @ RL1.93m
SPILLWAY 3	Rectangular 3000(crest w)x200(h)mm side @ RL2.2m

TABLE 6: ATTENUATION PERFORMANCE OF ATTENUATION POND FOR A RANGE OF RECURRANCE INTERVALS (DEVELOPMENT SITE ONLY)

ATTENUATION SUMMARY									
RI 1:10 YEARS									
PARAMETER	POND								
PEAK INFLOW (I/s)	62.24								
PEAK OUTFLOW (I/s)	46.97								
BASE ELEVATION (m)	1.40								
1:10 YEAR PEAK WATER LEVEL (RLm)	2.10								
RI 1:50 YEARS									
PARAMETER	POND								
PEAK INFLOW (I/s)	123.07								
PEAK OUTFLOW (I/s)	111.84								
BASE ELEVATION (m)	1.40								
1:50 YEAR PEAK WATER LEVEL (RLm)	2.20								
RI 1:100 YEARS									
PARAMETER	POND								
PEAK INFLOW (I/s)	160.78								
PEAK OUTFLOW (I/s)	151.29								
BASE ELEVATION (m)	1.40								
1:100 YEAR PEAK WATER LEVEL (RLm)	2.23								

The results of the post development attenuated peak runoff are provided in Table 7 together with the pre-development peak runoff.

TABLE 7: PRE-	AND POST DEVEL	.OPMENT PEAK F	RUNOFF FLOWS (I/s)
---------------	----------------	-----------------------	--------------------

RECURR. INT. YR	0.5YR	1YR	2YR	5YR	10YR	20YR	50YR	100YR
POST DEVELOPMENT	Infiltrate	2.06	4.9	25.49	46.97	71.98	111.84	151.29
PRE DEVELOPMENT		0.32	4.99	28.47	53.21	80.18	125.26	168.27

Figure 8 compares the attenuation of post-development peak flows with the predevelopment peak flows (Table 7). The post-development peak flows were found to be less than the pre-development peak flows for the recurrence intervals 1:1 year to 1:100 year.

FIGURE 8: ATENUATION OF POST-DEVELOPMENT PEAKS TO PRE-DEVELOPMENT VALUES

4.3 OUTLET STRUCTURE

The outlet structure for the attenuation pond will consist of a single chamber structure. The structure will have a hinged steel safety grid for easy access to the orifices and outlet should they become blocked. A summary of the orifices, weirs and spillways is provided in Table 5. Schematic drawings of the outlet structure are shown in drawing MC410-C901.

The 375mm Ø outfall stormwater main, from the outlet structure to the gabion stilling outlet structure, will have a capacity of 159 l/s which is more than the attenuated 1:100 year runoff of 151 l/s.

In the event of a blockage occurring in the 375mm stormwater outfall pipe, the spillway weir will provide sufficient capacity for the unattenuated 1:100 year runoff from the site of 174.9 l/s to be safely conveyed off-site to the lagoon.

4.4 SUMMARY: QUANTITY AND RATE OF RUNOFF

4.4.1 ATTENUATION OF THE 1:10 TO 100-YEAR RI, 24 HOUR STORM

The attenuation of the 1:10 to 100-year RI, 24 hour storm runoff peaks needs to be controlled, in order for the peak outflow to be less than the calculated pre-development flows.

Table 8 summarises the objectives achieved for the 10 to 100year RI storm.

PARAMETER	RI 1:1 YEARS	RI 1:10 YEARS	RI 1:50 YEARS	RI 1:100 YEARS
PEAK INFLOW (I/s)	3.76	28.37	61.29	78.42
BASE ELEVATION (RLm)	1.40	1.40	1.40	1.40
PEAK WATER LEVEL (RLm)	1.60	2.10	2.20	2.23
PEAK WATER DEPTH (m)	0.20	0.70	0.80	0.83
PEAK STORAGE (m ³)	12.30	60.82	73.58	77.27
PEAK RUNOFF FROM PRE- DEVELOPMENT (I/s)	0.32	53.21	125.26	168.27
PEAK RUNOFF FROM POST DEVELOPMENT SITE AFTER ATTENUATION (I/s)	2.06	46.97	111.84	151.29

TABLE 8: ATTENUATION SUMMARY

Conclusion:

- 1. The SuDS objective to attenuate post development peaks to pre-development levels up to 1:50 years, is achieved up to the 1:100 year RI.
- 2. The 1:100-year post-development peak is attenuated to the pre-development level and an spillway weir from the attenuation pond to the lagoon is provided. This satisfies the objective to minimise or remove the risk of damage or danger to adjacent or downstream properties.

5 POST-DEVELOPMENT STORMWATER MANAGEMENT – QUALITY TREATMENT

5.1 OBJECTIVES

Part of the stormwater management plan is to formulate measures required to achieve runoff of an acceptable quality. For a development such as this, suspended solids (SS) should be reduced by 80% and total phosphorus should be reduced by 45%. Furthermore, the measures utilised should promote urban biodiversity and enhance amenity and aesthetics of the site and its surroundings.

Due to the development's limited available space, an enhanced swale/pond was the only method considered for treatment and attenuation.

5.2 LITTER AND SEDIMENT TRAPS

Litter and sediment control should be a priority in the design and management of the stormwater system. In a development such as the proposed development, it is anticipated that the building's management will have pride in the appearance of the development and thus littering is not expected to be a significant issue.

The provision of sediment traps are proposed for each catchpit by lowering the base of the catchpits with a depth of 100mm below the outlet pipe invert before entering the stormwater pipe system. A forebay is provided at the entrance point to the pond where litter and sediment will be collected.

5.3 SUSPENDED SOLIDS (SS) AND TOTAL PHOSPHORUS (TP) REMOVAL

As described above, runoff from the site will be discharged to the attenuation pond.

This pond will be designed as a dry extended detention (ED) pond (Georgia Stormwater Management Manual, Volume 2 – August 2001). A plan and schematic sectional views are shown in drawing MC410-C901. The pond will comprise of a forebay basin and enhanced swale area. The entire pond and swale surface area will be vegetated with cynodon grass.

Stormwater inflow will be conveyed to the forebay, from where it overflows onto the swale area of 50m², which is designed to accommodate and treat the ½ Year RI peak flow volume of 5m³ from the site through infiltration. The treatment volume will have a depth of 100mm which will drain through the swale area by infiltration over a maximum of 24 hours, to a 110mm perforated underdrain pipe discharging to the outlet structure. The anticipated TP removal rate by natural infiltration through the pond/swale surface is 50%.

The forebay basin is designed to facilitate the removal of SS before it enters the attenuation pond. Catchpits within the development will have sediment traps as part of the structure, which will further enhance the removal of SS before it enters the attenuation pond. The SS removal rate is expected to be 80%.

6 STORMWATER MANAGEMENT

6.1 STORMWATER VOLUME AND RATE OF RUNOFF

Compliance with the SuDS requirements relating to volume and rate of runoff has been achieved, by providing a dry attenuation pond to be located on site next to the delivery entrance. All runoff from the site will be diverted to the pond and outflow peaks will be attenuated to pre-development levels (Figure 9).

6.2 STORMWATER QUALITY

Compliance with the stormwater SuDS objectives is achieved by providing a forebay and enhanced swale & pond combination. The Water Quality Volume will be infiltrated through the swale surface to remove pollutants.

6.3 OVERLAND ESCAPE ROUTES

An overland escape route, comprised of a weir outflow and Armorflex channel discharging into the lagoon, will be provided.

7 MAINTENANCE OF THE STORMWATER SYSTEM

The ongoing sustainability of the stormwater system is dependent upon its effective maintenance. It is anticipated that the development will not generate much sediment, particularly once established, and that the catchpits and forebay will efficiently intercept any sediment which is generated. As a result, the need to remove litter and sediment from the catchpits and forebay will have to be monitored on a regular basis along with the pond on a more long-term basis.

Due to the location and shallow depth of the forebay, grass swale and pond, with side slopes of 1:2, it is easily accessible by maintenance personnel to perform the actual maintenance on the stormwater system. Warning and instructive signs should be erected near the pond to warn of rising water levels during storm events.

In Table 9 the main elements of the maintenance schedule are listed with recommended frequencies.

TABLE 9 STORMWATER SYSTEM MAINTENANCE SCHEDULE

COMPONENT	NO.	INSPECTIO	ONS (I)	NO.		TENANCE (R)	NO.	CORRECTIVE AN MAINTEN	D IRREGULAR IANCE	<i>م</i> =۱)	ANNU INSP	JAL S PECT	SPRE ION;	AD C R=RC	of MA	AINTE NE; C	ENAN DTHE	ICE / R AS	ACTIN SPE	/ITIE CIFIE	S ED)
		ACTIVITY	FREQUENCY (months)		ACTIVITY	FREQUENCY (months)		ACTIVITY	FREQUENCY (months)	J	F	м	A	М	J	J	A	S	0	N	D
Stormwater overland routes and road corridor	1.1	Inspect overland routes for obstructions, sediment or spalling	1	1.1	Remove obstructions, sediment from overland flow routes	3	1.1	Repair sagging/low points, spalling in overland flow routes	On occurrence	I,R	1	I	I,R			I,R	1		I,R		
Stormwater underground pipe system	2.1	Main Pipes(Concrete): Check that it is clear of obstructions	6	2.1	Main Pipes(Concrete): Remove litter and obstructions by rodding, bucket machine or jetting	6	2.1	Main Pipes(Concrete): a) If blockage occurs rod, bucket machine or jet pipeline from manhole b) Replace damaged pipes	On occurrence	I,R						I,R					
	2.2	Manholes: Check structures, covers and frames	4	2.2	Manholes: Remove litter and obstructions	6	2.2	Manholes: Repair any damages	On occurrence	I	R						R	I			
	2.3	Catchpits: Check structures, covers and frames	4	2.3	Catchpits: Remove litter, sediment and obstructions	6	2.3	Catchpits: Repair any damage	On occurrence	I	R			I			R	I			
Forebay	3.1	Inspect forebay of any obstructions and sediment	1	3.1	Removal of obstructions and sediments deposits	1	3.1	Repair any damages to forebay	On occurrence	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R
Enhanced Swale	4.1	Swale: Check that vegetation and grassblocks are in place and that it is clear of obstruction and sediment deposits	3	4.1	Swale: Maintain vegetation and remove any obstructions and sediment deposits	1*	4.1	Swale: Repair erosion and damages to swale bed and side slopes	On occurrence	I,R	R	R	I,R	R	R	I,R	R	R	I,R	R	R
	4.2	Check health of cynodon grass cover Check 24hr infiltration rate and ponding	3	4.2	Mow grass cover and maintain	1	4.3	Remove sediment deposits on base of swale	On occurrence	I,R	R	R	I,R	R	R	I,R	R	R	I,R	R	R

TABLE 9: CONTINUED

CONTENT	NO.	INSPEC	TIONS	NO.	ROUTINE MAI	NTENANCE	NO.	CORREC IRREGULAR I	TIVE AND MAINTENANCE		ACTI	AN VITIE	NUAL S(I=IN	SPR SPEC	EAD CTION SPEC	OF M I; R=F IFIED	AINTI ROUT)	ENAN INE; (CE OTHE	R AS	
		ACTIVITY	FREQUENCY (months)		ACTIVITY	FREQUENCY (months)		ACTIVITY	FREQUENCY (months)	J	F	м	Α	м	J	J	A	S	ο	N	D
Attenuation Pond	5.1	Inspect debris at inlet pipes and outlet structure	1	5.1	Remove debris from inlet pipes and outlet structure	1	5.1	Repair any undercut or eroded areas	On occurrence	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R
	5.2	Inspect pond for growth of invasive vegetation	1	5.2	Remove any invasive vegetation	1				I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R
	5.3	Monitor sediment deposits at inlets	6	5.3	Remove excess sediment	6				I,R						I,R					
	5.4	Check that weir wall is clear of any obstructions	1	5.4	Remove any obstructions	1	5.4	Repair any structural damage	On occurrence	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R
	5.5	Inspect pond side slopes for any damages and erosion	1	5.5			5.5	Repair any damages to the side slopes or structures	On occurrence	I	I	I	Ι	I	1	I	1	I	Ι	I	Ι
	5.6	Check health of cynodon grass cover	3	5.6	Mow grass cover and maintain	1				I,R	R	R	I,R	R	R	I,R	R	R	I,R	R	R
Outlet Structure:	6.1	Check that orifices are clear and not blocked	4	6.1	If a orifice becomes obstructed, the obstruction should be removed by hand	4	6.1	Repair any structural damage	On occurrence	I,R				I,R				I,R			
	6.2	Check that outlet opening is not blocked	4	6.2	Remove any obstructions	4				I,R				I,R				I,R			
	6.3	Ensure that the steel hinged grid can open and close	4	6.3	Fix any access problems with hinged grid	4				I,R				I,R				I,R			
Outlet Weir	7.1	Check that weir is clear of any obstructions	1	7.1	Remove any obstructions	1	5.1	Repair any structural damage	On occurrence	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R
Spillway channel to Knysna Lagoon	8.1	Inspect channel for any obstructions	1 Sustainable Dra	7.1	Remove any obstructions in the channel		7.1	Repair any structural damage		I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R	I,R

8 CONCLUSIONS

8.1 PROPOSED DEVELOPMENT

Farm 216 Portion 29 of the Knysna Municipal region, is situated just south of the N2 national road between the Belvidere/Brenton-on-sea Divisional Road and the Knysna Lagoon.

The 3894m² property previously consisted of a building, which was used as a restaurant, but have since been demolished.

The new proposed development will consist of a Farm Stall, Restaurant building, adjacent Bed and Breakfast units and a parking area .

8.2 EXISTING CONDITIONS

The pre-development conditions for the site were treated as totally undeveloped with brush veld and sandy soil conditions. The site has an average slope of 3.5% and drains overland in a north-eastern direction to the Knysna Lagoon.

8.3 RUNOFF PEAK ATTENUATION

Estimates of the pre-development runoff have been computed for a range of recurrence intervals (Table 3).

The permitted peak outflow from the site is limited to these pre-development peaks.

It is proposed to develop the entire site as indicated on Figure 2. The runoff will be attenuated in one dry attenuation pond located in the north-western corner of the site next to the entrance road from the divisional road. The attenuation objectives are achieved as summarised in Table 8.

8.4 RUNOFF WATER QUALITY TREATMENT

Runoff water quality standards are achieved through the use of a forebay and natural infiltration through the enhanced swale area of the attenuation pond.

8.5 STORMWATER MANAGEMENT

Compliance with all the stormwater management requirements are shown and summarised in the section.

8.6 MAINTENANCE

The owners are responsible for the maintenance of the stormwater system. Maintenance procedures should follow those provided in Section 7.

G A McGILL Pr Eng 2023-04-13

ANNEXURE A

PRE-DEVELOPMENT RUNOFF

					РК	ЦЦ	EVE	LOPN	IENT	SUB	-CA1	CHM	ENT	S SU	MMA	RY							
SN	Element Descrip	tion Area	Drainage	Weighted	Conductivity	y Drying	Average E	quivalent In	pervious Im	pervious Ir	npervious I	mpervious	Pervious	Pervious	Curb &	tain Gage	Total	Total	Total	Total	Fotal P	eak	Time
	Ω		Node ID	Curve		Time	Slope	Width	Area	Area	Area	Area	Area	Area	Gutter	9	recipitation	Runon Ev	aporation In	iltration Ru	inoff Rur	loff	of
				Number						No	Depression	Manning's I	Depression 1	Manning's	Length							Ō	centration
									ŏ	epression	Depth	Roughness	Depth F	oughness									
		(m ²)			(mm/hr	r) (days)	(%)	(L	(%)	(%)	(mm)		(mm)		(H		(mm)	(mm)	(mm)) (mm)) (mm	Ips) (days	hh:mm:ss)
1 {5	ite 1).Catchment A1 10YR RI	I 643885.00	Jun-A1	65.00	0.150	0 7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	101.00	0.00	0.0000	65.5620 3	34.20 979	9.98	0 03:32:34
2 {5	ite 1). Catchment A2 10YR RI	1 1499985.00	Jun-A2	65.00	0.150	0 7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	101.00	0.00	0.0000	66.4910 3	32.12 1425	6.43	0 05:18:07
3 {5	ite 1).Catchment A3 10YR RI	13358.00	Jun-A3	65.00	0.150	0 7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	101.00	0.00	0.0000	63.0930 3	36.69 65	6.88	0 01:17:57
4 {5	ite 1). Catchment A4 10YR RI	1 537.00	Jun-A4	56.00	0.150	0 7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	101.00	0.00	0.0000	70.9700 2	00.61	7.25	0 00:08:55
6 {Site	1}.Catchment B1 B2 10YR RI	4569.00	Jun-Pre01	67.00	0.150	0 7.00	3.5000	83.10	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	101.00	0.00	0.0000	60.2110 3	89.63 55	5.21	0 00:37:31
1 {5	ite 1). Catchment A1 50YR RI	643885.00	Jun-A1	65.00	0.150	0 7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	157.00	0.00	0.0000	81.0520 7	4.71 3175	6.93	0 02:58:10
2 {5	ite 1).Catchment A2 50YR RI	1 1499985.00	Jun-A2	65.00	0.150	0 7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	157.00	0.00	0.0000	81.6430 7	2.35 4564	1.07	0 04:26:38
3	ite 1}.Catchment A3 50YR RI	13358.00	Jun-A3	65.00	0.150	0 7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	157.00	0.00	0.0000	78.3000 7	7.53 204	1.75	0 01:05:20
4 {5	ite 1). Catchment A4 50YR RI	1 537.00	Jun-A4	56.00	0.150	0 7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	157.00	0.00	0.0000	91.8050 6	54.20 15	0.01	0 00:07:29
6 {Site	1}.Catchment B1 B2 50YR RI	4569.00	Jun-Pre01	67.00	0.150	0 7.00	3.5000	83.10	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	157.00	0.00	0.0000	74.0530 8	31.91 125	5.26	0 00:31:27
1 {5	ite 1). Catchment A1 100YR F	RI 643885.00	Jun-A1	65.00	0.150	0 7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	187.00	0.00	0.0000	87.0880 9	8.68 4815	5.58	0 02:46:08
2 {5	ite 1}.Catchment A2 100YR F	RI 1499985.00	Jun-A2	65.00	0.150	0 7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	187.00	0.00	0.0000	87.3780 9	96.28 6954	1.13	0 04:08:37
3 {5	ite 1).Catchment A3 100YR F	RI 13358.00	Jun-A3	65.00	0.150	0 7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	187.00	0.00	0.0000	84.2740 10	01.61 293	3.94	0 01:00:55
4 {5	ite 1). Catchment A4 100YR F	RI 537.00	Jun-A4	56.00	0.150	0 7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	187.00	0.00	0.0000	00.4830 8	35.56 19	9.68	0 00:06:58
6 {Site	1).Catchment B1 B2 100YR f	RI 4569.00	Jun-Pre01	67.00	0.150	0 7.00	3.5000	83.10	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00 Rai	n Gage-01	187.00	0.00	0.0000	79.3980 10	06.64 168	8.27	0 00:29:19

ANNEXURE B

POST DEVELOPMENT RUNOFF

FIGURE B1: SWMM MODEL LAYOUT OF PRE- & POST-DEVELOPMENT

1:0.5YR SUB-CATCHMENTS SUMMARY

SN	Element	Description	Area	Drainage	Weighted	Conductivity	Drying	Average	Equivalent	Impervious	Impervious	Impervious	Impervious	Pervious	Pervious	Curb &	Rain Gage	e Total	Total	Total	Total	Total	Peak	t Time
	ID			Node ID	Curve		Time	Slope	Width	Area	Area	Area	Area	Area	Area	Gutter	IC	Precipitation	Runon	Evaporation	Infiltration	Runoff	Runoff	i of
					Number						No	Depression	Manning's	Depression	Manning's	Length								Concentration
											Depression	Depth	Roughness	Depth	Roughness									
			(m²)			(mm/hr)	(days)	(%)	(m)	(%)	(%)	(mm)		(mm)		(m)		(mm)	(mm)	(mm)	(mm)	(mm)	(lps)) (days hh:mm:ss)
1	{Site 1}.Catchment A1		643885.00	Jun-A1	65.00	0.1500	7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.7370	0.00	0.00	0 07:24:23
2	{Site 1}.Catchment A2		1499985.00	Jun-A2	65.00	0.1500	7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.7370	0.00	0.00	0 11:05:01
3	{Site 1}.Catchment A3		13358.00	Jun-A3	65.00	0.1500	7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.7370	0.00	0.00	0 02:42:57
4	{Site 1}.Catchment A4		537.00	Jun-A4	56.00	0.1500	7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.8120	0.00	0.00	0 00:18:40
5	{Site 1}.Catchment B1		3369.00	Jun-PostB1	91.25	0.1500	7.00	0.5000	38.30	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	11.1620	0.87	0.10	0 03:06:26
6	{Site 1}.Catchment B1 B2		4569.00	Jun-Pre01	67.00	0.1500	7.00	3.5000	83.10	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.7330	0.00	0.00	0 01:18:26
7	{Site 1}.Catchment B2		1200.00	Jun-PostB2	83.20	0.1500	7.00	0.5000	26.70	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	16.00	0.00	0.0000	14.5970	0.00	0.00	0 02:04:37

1:0.5 YR STORAGE SUMMARY

SI	Element	X Coordinate	Y Coordinate	Description	Invert	Max	Max	Initial	Initial	Ponded	Evaporation	Constant	Max	Min	Decay	Exfiltration	Peak	Peak	Peak	Peak	Maximum	Maximum	Average	Average	Time of	Total	Total	Total	Total
	ID				Elevation	(Rim)	(Rim)	Water	Water	Area	Loss	Flow	Exfiltration	Exfiltration	Constant	Rate	Inflow	Lateral	Outflow	Exfiltration	HGL	HGL	HGL	HGL	Maximum	Exfiltration	Flooded	Time	Retention
						Elevation	Offset	Elevation	Depth			Rate	Rate	Rate				Inflow		Flow	Elevation	Depth	Elevation	Depth	HGL	Volume	Volume	Flooded	Time
																				Rate	Attained	Attained	Attained	Attained	Occurrence				
					(m)	(m)	(m)	(m)	(m)	(m²)		(lps)	(mm/hr)	(mm/hr)	(1/hrs)	(mm/hr)	(lps)	(lps)	(lps)	(cmm)	(m)	(m)	(m)	(m)	(days hh:mm)	(1000-m ³)	(ha-mm)	(minutes)	(seconds)
	1 Stor-02	-726.21	-3767370.72		1.40	2.40	1.00	1.40	0.00	0.00	0.00	0.2600					0.10	0.00	0.00	0.02	1.40	0.00	1.40	0.00	0 00:00	0.00	0.00	0.00	0.00

1:0.5 YR ORIFICES

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice	Orifice	Peak	Time of
	ID		Node	Node	Node	Node	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Invert	Coefficient	Flow	Peak
					Invert	Invert				Diameter	Height	Width	Elevation	Offset			Flow
					Elevation	Elevation											Occurrence
					(m)	(m)				(mm)	(m)	(m)	(m)	(m)		(lps)	(days hh:mm)
1	Orifice-01		Stor-02	Jun-BOut	1.40	1.50	SIDE	CIRCULAR	NO	200.00			1.50	0.10	0.6140	0.000	0 00:00

1:0.5 YR WEIRS

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Туре	Flap	Crest	Crest	Length	Weir	Discharge	Peak
	ID		Node	Node	Node	Node		Gate	Elevation	Offset		Total	Coefficient	Flow
					Invert	Invert						Height		
					Elevation	Elevation								
					(m)	(m)			(m)	(m)	(m)	(m)		(lps)
1	Weir-02		Stor-02	Jun-BOut	1.40	1.50	TRAPEZOIDAL	NO	1.85	0.45	0.10	0.25	2.40	0.00
2	Weir-03		Stor-02	Jun-BOut	1.40	1.50	TRAPEZOIDAL	NO	2.20	0.80	1.50	0.20	2.40	0.00

1:0.5 YR LINK FLOW SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial	Flap Lengthening	Peak	Time of	Max	Travel	Design	Max Flow /	Max	Total	Max	Reported
	ID		Node	Node		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter	Width	Roughness	Losses	Losses	Losses	Flow 0	Gate Facto	Flow	Peak	Flow	Time	Flow	Design Flow	Flow Depth /	Time	Flow	Condition
						Elevation	Offset	Elevation	Offset				or Height									Flow	Velocity		Capacity	Ratio	Total Depth	urcharged	Depth	
																						Occurrence					Ratio			
					(m)	(m)	(m)	(m)	(m)	(m)	(%)		(mm)	(mm)					(lps)		(lps)	(days hh:mm)	(m/sec)	(min)	(lps)			(min)	(m)	
1	1 Link-01		Jun-Pre01	Out-Pre01	41.48	1.00	0.00	0.50	0.00	0.50	1.2100	CIRCULAR	400.000	400.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		198.17	0.00	0.00	0.00	0.00	Calculated
1	2 Link-02		Jun-A3	Jun-A1	66.07	2.75	0.00	2.00	0.00	0.75	1.1400	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		6527.65	0.00	0.00	0.00	0.00	Calculated
3	3 Link-03		Jun-PostB1	Jun-PostB2	45.54	1.75	0.00	1.60	0.00	0.15	0.3300	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.100	1 00:01	0.08	9.49	3516.23	0.00	0.00	0.00	0.01	Calculated
4	4 Link-04		Jun-PostB2	Stor-02	8.29	1.60	0.00	1.50	0.10	0.10	1.2100	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.100	1 00:02	0.11	1.26	6729.01	0.00	0.00	0.00	0.01	Calculated
1	5 Link-05		Jun-A1	Jun-ABOut	20.06	2.00	0.00	1.00	0.00	1.00	4.9900	Rectangular	1000.000	1000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		5907.40	0.00	0.00	0.00	0.00	Calculated
6	6 Link-06		Jun-ABOut	Out-Post02	52.25	1.00	0.00	0.50	0.00	0.50	0.9600	Rectangular	1000.000	2000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		6270.84	0.00	0.00	0.00	0.00	Calculated
	7 Link-07		Jun-BOut	Jun-ABOut	10.00	1.50	0.00	1.40	0.40	0.10	1.0000	CIRCULAR	380.000	380.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		151.96	0.00	0.00	0.00	0.00	Calculated
8	B Link-09		Jun-A2	Out-A2	6.93	2.00	0.00	0.50	0.00	1.50	21.6500	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO 1.00	0.000	0 00:00	0.00		28504.09	0.00	0.00	0.00	0.00	Calculated

1:10YR SUB-CATCHMENTS SUMMARY

SN	Element	Description Are	a Drainage	Weighted	Conductivity	Drying	Average	Equivalent	Impervious	Impervious	Impervious	Impervious	Pervious	Pervious	Curb &	Rain Gage	e Total	Total	Total	Total	Total	Peak	Time
	ID		Node ID	Curve		Time	Slope	Width	Area	Area	Area	Area	Area	Area	Gutter	10	Precipitation	Runon	Evaporation	Infiltration	Runoff	Runoff	of
				Number						No	Depression	Manning's	Depression	Manning's	Length								Concentration
										Depression	Depth	Roughness	Depth	Roughness									
		(m	2)		(mm/hr)	(days)	(%)	(m)	(%)	(%)	(mm)		(mm)		(m)		(mm)	(mm)	(mm)	(mm)	(mm)	(lps)	(days hh:mm:ss)
1	{Site 1}.Catchment A1	643885.0	00 Jun-A1	65.00	0.1500	7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	65.5620	34.20	979.98	0 03:32:34
2	{Site 1}.Catchment A2	1499985.0	0 Jun-A2	65.00	0.1500	7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	66.4910	32.12	1425.43	0 05:18:07
3	{Site 1}.Catchment A3	13358.0	00 Jun-A3	65.00	0.1500	7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	63.0930	36.69	65.88	0 01:17:57
4	{Site 1}.Catchment A4	537.0	0 Jun-A4	56.00	0.1500	7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	70.9700	29.00	7.25	0 00:08:55
5	{Site 1}.Catchment B1	3369.0	0 Jun-PostB1	91.25	0.1500	7.00	0.5000	38.30	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	20.5820	75.83	45.77	0 01:29:11
7	{Site 1}.Catchment B2	1200.0	0 Jun-PostB2	83.20	0.1500	7.00	0.5000	26.70	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	1 101.00	0.00	0.0000	36.8930	61.40	17.60	0 00:59:36

1:10YR STORAGE SUMMARY

SN Element	X Coordinate	Y Coordinate	Description	Invert	Max	Max	Initial	Initial	Ponded	Evaporation	Constant	Max	Min	Decay	Exfiltration	Peak	Peak	Peak	Peak	Maximum	Maximum	Average	Average	Time of	Total	Total	Total	Total
ID				Elevation	(Rim)	(Rim)	Water	Water	Area	Loss	Flow	Exfiltration	Exfiltration	Constant	Rate	Inflow	Lateral	Outflow	Exfiltration	HGL	HGL	HGL	HGL	Maximum	Exfiltration	Flooded	Time	Retention
					Elevation	Offset	Elevation	Depth			Rate	Rate	Rate				Inflow		Flow	Elevation	Depth	Elevation	Depth	HGL	Volume	Volume	Flooded	Time
																			Rate	Attained	Attained	Attained	Attained	Occurrence				
				(m)	(m)	(m)	(m)	(m)	(m²)		(lps)	(mm/hr)	(mm/hr)	(1/hrs)	(mm/hr)	(lps)	(lps)	(lps)	(cmm)	(m)	(m)	(m)	(m)	(days hh:mm)	(1000-m ³)	(ha-mm)	(minutes)	(seconds)
1 Stor-02	-726.21	-3767370.72		1.40	2.40	1.00	1.40	0.00	0.00	0.00	0.2600					62.24	0.00	46.97	0.02	2.10	0.70	1.53	0.13	0 12:23	0.03	0.00	0.00	0.00

1:10YR ORIFICES SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice	Orifice	Peak	Time of
	ID		Node	Node	Node	Node	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Invert	Coefficient	Flow	Peak
					Invert	Invert				Diameter	Height	Width	Elevation	Offset			Flow
					Elevation	Elevation											Occurrence
					(m)	(m)				(mm)	(m)	(m)	(m)	(m)		(lps)	(days hh:mm)
1	Orifice-01		Stor-02	Jun-BOut	1.40	1.40	SIDE	CIRCULAR	NO	60.00			1.50	0.10	0.6140	5.790	0 12:23

1:10 WEIRS SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Туре	Flap	Crest	Crest	Length	Weir	Discharge	Peak
	ID		Node	Node	Node	Node		Gate	Elevation	Offset		Total	Coefficient	Flow
					Invert	Invert						Height		
					Elevation	Elevation								
					(m)	(m)			(m)	(m)	(m)	(m)		(lps)
1	Weir-02		Stor-02	Jun-BOut	1.40	1.40	TRAPEZOIDAL	NO	1.93	0.53	0.13	0.27	2.40	41.18
2	Weir-03		Stor-02	Jun-BOut	1.40	1.40	RECTANGULAR	NO	2.20	0.80	3.00	0.20	1.84	0.00

1:10 YR LINK FLOW SUMMARY

SN Element	t Description	From (Inlet)	To (Outlet)	Length	Inlet	t Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial	Flap	Lengthening	Peak	Time of	Max	Travel	Design	Max Flow /	Max	Total	Max	Reported
10)	Node	Node		Invert	t Invert	Invert	Invert	Drop	Slope	Shape	Diameter	Width	Roughness	Losses	Losses	Losses	Flow	Gate	Factor	Flow	Peak	Flow	Time	Flow	Design Flow	Flow Depth /	Time	Flow	Condition
					Elevation	Offset	Elevation	Offset				or Height										Flow	Velocity		Capacity	Ratio	Total Depth	Surcharged I	Depth	
																						Occurrence					Ratio			
				(m)	(m)) (m)	(m)	(m)	(m)	(%)		(mm)	(mm)					(lps)			(lps)	(days hh:mm)	(m/sec)	(min)	(lps)			(min)	(m)	
1 Link-01	L	Jun-Pre01	Out-Pre01	41.48	1.00	0.00	0.50	0.00	0.50	1.2100	CIRCULAR	400.000	400.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	52.600	0 12:10	1.34	0.52	198.17	0.27	0.35	0.00	0.14	Calculated
2 Link-02	2	Jun-A3	Jun-A1	66.07	2.75	0.00	2.00	0.00	0.75	1.1400	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	65.500	0 12:11	1.18	0.93	6527.65	0.01	0.07	0.00	0.11	Calculated
3 Link-03	3	Jun-PostB1	Jun-PostB2	45.54	1.75	0.00	1.60	0.00	0.15	0.3300	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	45.190	0 12:11	0.69	1.10	3516.23	0.01	0.08	0.00	0.12	Calculated
4 Link-04	1	Jun-PostB2	Stor-02	8.29	1.60	0.00	1.50	0.10	0.10	1.2100	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	62.240	0 12:11	1.19	0.12	6729.01	0.01	0.07	0.00	0.10	Calculated
5 Link-05	5	Jun-A1	Jun-ABOut	20.06	2.00	0.00	1.00	0.00	1.00	4.9900	Rectangular	1000.000	1000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	1023.800	0 12:40	4.38	0.08	5907.40	0.17	0.23	0.00	0.23	Calculated
6 Link-06	5	Jun-ABOut	Out-Post02	52.25	1.00	0.00	0.50	0.00	0.50	0.9600	Rectangular	1000.000	2000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	1058.070	0 12:40	2.19	0.40	6270.84	0.17	0.24	0.00	0.24	Calculated
7 Link-07	,	Jun-BOut	Jun-ABOut	10.00	1.40	0.00	1.00	0.00	0.40	4.0000	CIRCULAR	380.000	380.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	46.970	0 12:23	2.00	0.08	303.92	0.15	0.27	0.00	0.10	Calculated
8 Link-09	9	Jun-A2	Out-A2	6.93	2.00	0.00	0.50	0.00	1.50	21.6500	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	1425.430	0 13:30	8.42	0.01	28504.09	0.05	0.15	0.00	0.23	Calculated

1:50YR SUB-CATCHMENTS SUMMARY

SN	Element [Description	Area	Drainage	Weighted	Conductivity	Drying	Average I	Equivalent	Impervious	Impervious	Impervious	Impervious	Pervious	Pervious	Curb &	Rain Gage	Total	Total	Total	Total	Total	Peak	Time
	ID			Node ID	Curve		Time	Slope	Width	Area	Area	Area	Area	Area	Area	Gutter	ID	Precipitation	Runon	Evaporation	Infiltration	Runoff	Runoff	of
					Number						No	Depression	Manning's	Depression	Manning's	Length								Concentration
											Depression	Depth	Roughness	Depth	Roughness									
			(m²)			(mm/hr)	(days)	(%)	(m)	(%)	(%)	(mm)		(mm)		(m)		(mm)	(mm)	(mm)	(mm)	(mm)	(lps)	(days hh:mm:ss)
1	{Site 1}.Catchment A1		643885.00	Jun-A1	65.00	0.1500	7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	81.0520	74.71	3175.93	0 02:58:10
2	{Site 1}.Catchment A2		1499985.00	Jun-A2	65.00	0.1500	7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	81.6430	72.35	4564.07	0 04:26:38
3	{Site 1}.Catchment A3		13358.00	Jun-A3	65.00	0.1500	7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	78.3000	77.53	204.75	0 01:05:20
4	{Site 1}.Catchment A4		537.00	Jun-A4	56.00	0.1500	7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	91.8050	64.20	15.01	0 00:07:29
5	{Site 1}.Catchment B1		3369.00	Jun-PostB1	91.25	0.1500	7.00	0.5000	38.30	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	21.7970	130.51	90.42	0 01:14:45
7	{Site 1}.Catchment B2		1200.00	Jun-PostB2	83.20	0.1500	7.00	0.5000	26.70	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	157.00	0.00	0.0000	41.0510	112.87	36.80	0 00:49:57

1:50YR STORAGE SUMMARY

SN	Element	X Coordinate	Y Coordinate Description	Invert	Max	Max	Initial	Initial	Ponded Evaporation	n Consta	nt Max	(Min	Decay	Exfiltration	Peak	Peak	Peak	Peak	Maximum	Maximum	Average A	Average	Time of	Total	Total	Total	Total
	ID			Elevation	(Rim)	(Rim)	Water	Water	Area Lo	is Flo	w Exfiltration	Exfiltration C	onstant	Rate	Inflow	Lateral	Outflow	Exfiltration	HGL	HGL	HGL	HGL	Maximum	Exfiltration	Flooded	Time	Retention
					Elevation	Offset E	levation	Depth		Ra	te Rate	e Rate				Inflow		Flow	Elevation	Depth	Elevation	Depth	HGL	Volume	Volume	Flooded	Time
																		Rate	Attained	Attained	Attained A	ttained	Occurrence				
				(m)	(m)	(m)	(m)	(m)	(m²)	(ip	s) (mm/hr	(mm/hr)	(1/hrs)	(mm/hr)	(lps)	(lps)	(lps)	(cmm)	(m)	(m)	(m)	(m)	(days hh:mm)	(1000-m ³)	(ha-mm)	(minutes)	(seconds)
1	Stor-02	-726.21	-3767370.72	1.40	2.40	1.00	1.40	0.00	0.00 0.	0 0.26	00				123.07	0.00	111.84	0.02	2.20	0.80	1.57	0.17	0 12:14	0.03	0.00	0.00	0.00

1:50YR ORIFICES SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice	Orifice	Peak	Time of
	ID		Node	Node	Node	Node	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Invert	Coefficient	Flow	Peak
					Invert	Invert				Diameter	Height	Width	Elevation	Offset			Flow
					Elevation	Elevation											Occurrence
					(m)	(m)				(mm)	(m)	(m)	(m)	(m)		(lps)	(days hh:mm)
1	Orifice-01		Stor-02	Jun-BOut	1.40	1.40	SIDE	CIRCULAR	NO	60.00			1.50	0.10	0.6140	6.270	0 12:14

1:50YR WEIR SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Туре	Flap	Crest	Crest	Length	Weir	Discharge	Peak
	ID		Node	Node	Node	Node		Gate	Elevation	Offset		Total	Coefficient	Flow
					Invert	Invert						Height		
					Elevation	Elevation								
					(m)	(m)			(m)	(m)	(m)	(m)		(lps)
1	Weir-02		Stor-02	Jun-BOut	1.40	1.40	TRAPEZOIDAL	NO	1.93	0.53	0.13	0.27	2.40	105.57
2	Weir-03		Stor-02	Jun-BOut	1.40	1.40	RECTANGULAR	NO	2.20	0.80	3.00	0.20	1.84	0.00

1:50 YR LINK FLOW SUMMARY

SN	Element Description	From (Inlet)	To (Outlet)	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's E	Intrance	Exit/Bend	Additional	Initial F	lap Le	engthening	Peak	Time of	Max	Travel	Design	Max Flow /	Max	Total	Max	Reported
	ID	Node	Node		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter	Width	Roughness	Losses	Losses	Losses	Flow G	iate	Factor	Flow	Peak	Flow	Time	Flow	Design Flow	Flow Depth /	Time	Flow	Condition
					Elevation	Offset	Elevation	Offset				or Height										Flow	Velocity		Capacity	Ratio	Total Depth	Surcharged	Depth	
																						Occurrence					Ratio			
				(m)	(m)	(m)	(m)	(m)	(m)	(%)		(mm)	(mm)					(lps)			(lps)	(days hh:mm)	(m/sec)	(min)	(lps)			(min)	(m)	
1	Link-01	Jun-Pre01	Out-Pre01	41.48	1.00	0.00	0.50	0.00	0.50	1.2100	CIRCULAR	400.000	400.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	123.610	0 12:10	1.68	0.41	198.17	0.62	0.57	0.00	0.23	Calculated
1	Link-02	Jun-A3	Jun-A1	66.07	2.75	0.00	2.00	0.00	0.75	1.1400	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	203.320	0 12:10	1.68	0.66	6527.65	0.03	0.12	0.00	0.18	Calculated
3	Link-03	Jun-PostB1	Jun-PostB2	45.54	1.75	0.00	1.60	0.00	0.15	0.3300	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	88.180	0 12:11	0.83	0.91	3516.23	0.03	0.11	0.00	0.16	Calculated
4	Link-04	Jun-PostB2	Stor-02	8.29	1.60	0.00	1.50	0.10	0.10	1.2100	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	123.070	0 12:10	1.46	0.09	6729.01	0.02	0.09	0.00	0.14	Calculated
5	i Link-05	Jun-A1	Jun-ABOut	20.06	2.00	0.00	1.00	0.00	1.00	4.9900	Rectangular	1000.000	1000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	3316.000	0 12:20	6.08	0.05	5907.40	0.56	0.55	0.00	0.55	Calculated
6	i Link-06	Jun-ABOut	Out-Post02	52.25	1.00	0.00	0.50	0.00	0.50	0.9600	Rectangular	1000.000	2000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	3414.310	0 12:20	3.22	0.27	6270.84	0.54	0.53	0.00	0.53	Calculated
1	Link-07	Jun-BOut	Jun-ABOut	10.00	1.40	0.00	1.00	0.00	0.40	4.0000	CIRCULAR	380.000	380.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	111.790	0 12:14	2.54	0.07	303.92	0.37	0.42	0.00	0.16	Calculated
8	Link-09	Jun-A2	Out-A2	6.93	2.00	0.00	0.50	0.00	1.50	21.6500	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	4564.000	0 12:40	11.81	0.01	28504.09	0.16	0.27	0.00	0.41	Calculated

1:100YR SUB-CATCHMENTS SUMMARY

SN	Element De	escription	Area	Drainage	Weighted	Conductivity	Drying	Average E	quivalent	Impervious	Impervious	Impervious	Impervious	Pervious	Pervious	Curb &	Rain Gage	Total	Total	Total	Total	Total	Peak	Time
	ID			Node ID	Curve		Time	Slope	Width	Area	Area	Area	Area	Area	Area	Gutter	ID	Precipitation	Runon	Evaporation	Infiltration	Runoff	Runoff	of
					Number						No	Depression	Manning's	Depression	Manning's	Length								Concentration
											Depression	Depth	Roughness	Depth	Roughness									
			(m²)			(mm/hr)	(days)	(%)	(m)	(%)	(%)	(mm)		(mm)		(m)		(mm)	(mm)	(mm)	(mm)	(mm)	(lps)	(days hh:mm:ss)
1	{Site 1}.Catchment A1		643885.00	Jun-A1	65.00	0.1500	7.00	10.8200	370.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	87.0880	98.68	4815.58	0 02:46:08
2	{Site 1}.Catchment A2		1499985.00	Jun-A2	65.00	0.1500	7.00	6.5000	568.00	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	87.3780	96.28	6954.13	0 04:08:37
3	{Site 1}.Catchment A3		13358.00	Jun-A3	65.00	0.1500	7.00	12.4000	38.17	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	84.2740	101.61	293.94	0 01:00:55
4	{Site 1}.Catchment A4		537.00	Jun-A4	56.00	0.1500	7.00	40.0000	31.60	0.00	25.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	100.4830	85.56	19.68	0 00:06:58
5	{Site 1}.Catchment B1		3369.00	Jun-PostB1	91.25	0.1500	7.00	0.5000	38.30	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	22.1740	160.12	116.12	0 01:09:42
7	{Site 1}.Catchment B2		1200.00	Jun-PostB2	83.20	0.1500	7.00	0.5000	26.70	0.00	0.00	2.0000	0.0150	5.0000	0.1500	0.00	Rain Gage-01	187.00	0.00	0.0000	42.4260	141.36	47.88	0 00:46:35

1:100YR STORAGE SUMMARY

SN Element	X Coordinate	Y Coordinate	Description	Invert	Max	Max	Initial	Initial	Ponded	Evaporation	Constant	Max	Min	Decay	Exfiltration	Peak	Peak	Peak	Peak	Maximum	Maximum	Average	Average	Time of	Total	Total	Total	Total
ID				Elevation	(Rim)	(Rim)	Water	Water	Area	Loss	Flow	Exfiltration	Exfiltration	Constant	Rate	Inflow	Lateral	Outflow	Exfiltration	HGL	HGL	HGL	HGL	Maximum	Exfiltration	Flooded	Time	Retention
					Elevation	Offset	Elevation	Depth			Rate	Rate	Rate				Inflow		Flow	Elevation	Depth	Elevation	Depth	HGL	Volume	Volume	Flooded	Time
																			Rate	Attained	Attained	Attained	Attained	Occurrence				
				(m)	(m)	(m)	(m)	(m)	(m²)		(lps)	(mm/hr)	(mm/hr)	(1/hrs)	(mm/hr)	(lps)	(lps)	(lps)	(cmm)	(m)	(m)	(m)	(m)	(days hh:mm)	(1000-m ³)	(ha-mm)	(minutes)	(seconds)
1 Stor-02	-726.21	-3767370.72		1.40	2.40	1.00	1.40	0.00	0.00	0.00	0.2600					160.78	0.00	151.29	0.02	2.23	0.83	1.59	0.19	0 12:12	0.03	0.00	0.00	0.00

1:100YR ORIFICES SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice	Orifice	Peak	Time of
	ID		Node	Node	Node	Node	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Invert	Coefficient	Flow	Peak
					Invert	Invert				Diameter	Height	Width	Elevation	Offset			Flow
					Elevation	Elevation											Occurrence
					(m)	(m)				(mm)	(m)	(m)	(m)	(m)		(lps)	(days hh:mm)
1	Orifice-01		Stor-02	Jun-BOut	1.40	1.40	SIDE	CIRCULAR	NO	60.00			1.50	0.10	0.6140	6.420	0 12:12

1:100 YR WEIRS SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	From (Inlet)	To (Outlet)	Туре	Flap	Crest	Crest	Length	Weir	Discharge	Peak
	ID		Node	Node	Node	Node		Gate	Elevation	Offset		Total	Coefficient	Flow
					Invert	Invert						Height		
					Elevation	Elevation								
					(m)	(m)			(m)	(m)	(m)	(m)		(lps)
1	Weir-02		Stor-02	Jun-BOut	1.40	1.40	TRAPEZOIDAL	NO	1.93	0.53	0.13	0.27	2.40	120.20
2	Weir-03		Stor-02	Jun-BOut	1.40	1.40	RECTANGULAR	NO	2.20	0.80	3.00	0.20	1.84	24.67

1:100 YR LINK FLOW SUMMARY

SN	Element	Description	From (Inlet)	To (Outlet)	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial	Flap	Lengthening	Peak	Time of	Max	Travel	Design	Max Flow /	Max	Total	Max	Reported
	ID		Node	Node		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter	Width	Roughness	Losses	Losses	Losses	Flow	Gate	Factor	Flow	Peak	Flow	Time	Flow	Design Flow	Flow Depth /	Time	Flow	Condition
						Elevation	Offset	Elevation	Offset				or Height										Flow	Velocity		Capacity	Ratio	Total Depth	Surcharged	Depth	
																							Occurrence					Ratio			
					(m)	(m)	(m)	(m)	(m)	(m)	(%)		(mm)	(mm)					(lps)			(lps)	(days hh:mm)	(m/sec)	(min)	(lps)			(min)	(m)	
1	Link-01		Jun-Pre01	Out-Pre01	41.48	1.00	0.00	0.50	0.00	0.50	1.2100	CIRCULAR	400.000	400.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	166.070	0 12:10	1.78	0.39	198.17	0.84	0.70	0.00	0.28	Calculated
2	Link-02		Jun-A3	Jun-A1	66.07	2.75	0.00	2.00	0.00	0.75	1.1400	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	288.520	0 12:10	1.87	0.59	6527.65	0.04	0.14	0.00	0.21	Calculated
3	Link-03		Jun-PostB1	Jun-PostB2	45.54	1.75	0.00	1.60	0.00	0.15	0.3300	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	114.580	0 12:10	0.92	0.83	3516.23	0.03	0.12	0.00	0.18	Calculated
4	Link-04		Jun-PostB2	Stor-02	8.29	1.60	0.00	1.50	0.10	0.10	1.2100	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	160.780	0 12:10	1.54	0.09	6729.01	0.02	0.11	0.00	0.16	Calculated
5	Link-05		Jun-A1	Jun-ABOut	20.06	2.00	0.00	1.00	0.00	1.00	4.9900	Rectangular	1000.000	1000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	5037.450	0 12:20	6.68	0.05	5907.40	0.85	0.75	0.00	0.75	Calculated
e	Link-06		Jun-ABOut	Out-Post02	52.25	1.00	0.00	0.50	0.00	0.50	0.9600	Rectangular	1000.000	2000.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	5154.110	0 12:20	3.63	0.24	6270.84	0.82	0.71	0.00	0.71	Calculated
7	Link-07		Jun-BOut	Jun-ABOut	10.00	1.40	0.00	1.00	0.00	0.40	4.0000	CIRCULAR	380.000	380.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	151.500	0 12:12	2.75	0.06	303.92	0.50	0.50	0.00	0.18	Calculated
8	Link-09		Jun-A2	Out-A2	6.93	2.00	0.00	0.50	0.00	1.50	21.6500	CIRCULAR	1500.000	1500.00	0.0150	0.5000	0.5000	0.0000	0.00	NO	1.00	6954.110	0 12:40	13.31	0.01	28504.09	0.24	0.34	0.00	0.50	Calculated

METER	RI 1:1	RI 1:10	RI 1:50	RI 1:100
	YEARS	YEARS	YEARS	YEARS
' (I/s)	3.76	28.37	61.29	78.42
ION (RLm)	1.40	1.40	1.40	1.40
LEVEL (RLm)	1.60	2.10	2.20	2.23
DEPTH (m)	0.20	0.70	0.80	0.83
GE (m³)	12.30	60.82	73.58	77.27
F FROM PRE-	0 3 2	53.21	125.26	168.27
IT (I/s)	0.52			
F FROM POST				
IT SITE AFTER	2.06	46.97	111.84	151.29
l (I/s)				

REVISION:				
No.	DATE	DESCRIPTION		
GENERAL NOTES:				
 DRAWING IS FOR STORMWATER MANAGEMENT PURPOSES ONLY AND IS NOT A DETAIL DESIGN OR FOR CONSTRUCTION PURPOSES. 				

LEGEND:

Development Sub-Catchments

Interlocking Paving

Overland Escape Route

Stormwater Pipe 375mm or as otherwise shown

Stormwater Manhole

C1 V-Channel

Runoff Flow Direction

PROJECT:

FARM 216 PTN.29, UITZICHT, KNYSNA

DRAWING TITLE

TELEPHOLE

FOR APPROVAL

